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a b s t r a c t

Four integral identities for the fundamental solution of thin plate bending problems are presented in

this paper. These identities can be derived by imposing rigid-body translation and rotation solutions to

the two direct boundary integral equations (BIEs) for plate bending problems, or by integrating directly

the governing equation for the fundamental solution. These integral identities can be used to develop

weakly-singular and nonsingular forms of the BIEs for plate bending problems. They can also be

employed to show the nonuniqueness of the solution of the hypersingular BIE for plates on multi-

connected (or multiply-connected) domains. This nonuniqueness is shown for the first time in this

paper. It is shown that the solution of the singular (deflection) BIE is unique, while the hypersingular

(rotation) BIE can admit an arbitrary rigid-body translation term in the deflection solution, on the edge

of a hole. However, since both the singular and hypersingular BIEs are required in solving a plate

bending problem using the boundary element method (BEM), the BEM solution is always unique on

edges of holes in plates on multi-connected domains. Numerical examples of plates with holes are

presented to show the correctness and effectiveness of the BEM for multi-connected domain problems.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary element method (BEM) has been applied suc-
cessfully to solve the thin plate bending problem since the late
1970s and early 1980s based on the direct boundary integral
equation (BIE) formulations for both linear and nonlinear
responses [1–11]. The governing equation for the small deflection
of a thin elastic plate is the biharmonic equation in terms of the
deflection of the plate under a lateral load. Using the Rayleigh-
Green identity and the fundamental solution, the biharmonic
governing equation can be transformed into a direct BIE formula-
tion. In this direct BIE formulation, there are four boundary
variables, that is, the deflection, rotation angle, bending moment,
and the Kirchhoff equivalent shear force. Two of these boundary
variables are given from the boundary conditions (BCs) and the
other two need to be determined. Therefore, two BIEs are required
in the BIE formulation for the thin plate bending problem: the
displacement (deflection) BIE and the rotation (normal derivative)
BIE. The first BIE is strongly singular, whereas the second is
hypersingular. All these characteristics resemble those of the BIE
formulations for potential, elasticity, Stokes flow, acoustic and
elastodynamic problems, except for the fact that the use of the
ll rights reserved.
hypersingular BIE together with the singular BIE is a must for
solving the plate bending problem with the BEM.

For multi-connected (or multiply-connected) domain elasticity
and Stokes flow problems, it has been shown that the hypersin-
gular or traction BIEs have nonunique solutions on the boundary
of a hole or void where no constraint is applied. That is, a constant
translation term can be added to the solution of the displacement
on the boundary of the hole or void and the hypersingular BIE still
holds. This is because of the properties of the hypersingular
kernels, or the identities satisfied by such kernels [12–14]. This
defect in the hypersingular BIEs for multi-connected domains was
reported in Refs. [15,16] for elasticity problems and in Refs. [17,18]
for Stokes flow problems. Special care or techniques were also
proposed in Refs. [15,16] to remedy this situation with the traction
BIE for multi-connected domain elasticity problems. For Stokes flow
problems, a dual BIE formulation using a linear combination of the
singular and hypersingular BIEs is suggested in Refs. [17,18].

However, the above mentioned nonuniqueness solution pro-
blem has not been reported in the literature for the thin plate
bending BIE formulation for multi-connected domains. To apply
the BEM to solve more practical and large-scale plate bending
problems, such as the study of the bending behaviors of perfo-
rated plates (plates with numerous holes), the possible nonuni-
queness problem of the direct BIE formulation for thin plate
bending problems must be addressed.

It should be pointed out that this nonuniqueness problem with
the hypersingular BIE formulations for either elasticity or plate
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bending problems on multi-connected domains are general, in the
sense that it exists regardless of the sizes and shapes of the holes
or voids, or in 2-D or 3-D domains. For the specific degenerate
scale problems of the BIEs for multi-connected domains,
Refs. [19–23] can be consulted, which address the nonuniqueness
of the BIE solutions for problems in a domain with a specific
dimension, size or shape.

In this paper, the issue of the nonuniqueness solution with the
direct BIE formulation for thin plate bending problems on multi-
connected domains is studied. To do this, four integral identities
for the fundamental solution of plate bending problems are
derived first. These identities are derived by imposing the rigid-
body translation and rotation solutions to the direct BIEs and by
directly integrating the governing equation of the fundamental
solution. Then, it is shown that the singular BIE deflection
solution is unique while the hypersingular BIE deflection solution
is not unique on the edge of a hole. That is, the solution of the
hypersingular BIE can have an arbitrary rigid-body translation
term. These results are consistent with those for the BIEs for
multi-connected domain elasticity problems. However, these
observations have not been reported in the literature, to the best
knowledge of the authors.

The remaining of this paper is organized as following: in
Section 2, the direct BIE formulations for thin plate bending
problems are reviewed. Key results scattered in the literature
are summarized. In Section 3, four integral identities are derived
using the two methods mentioned in the above. In Section 4, the
nonuniqueness issue of the deflection solutions of the thin plate
bending BIEs for multi-connected domain problems is investi-
gated using the derived integral identities. In Section 5, a few
numerical examples of plates with holes and solved with the BEM
are presented to show the correctness of the thin plate BIEs for
multi-connected domains. Finally, Section 6 concludes the paper.
2. BIE formulation for thin plate bending problems

For the sake of completeness and discussions in the following
sections, we first review the governing equations and the direct
BIE formulations for general thin plate bending problems. These
formulations are well documented in the BEM literature [1–11].

Consider an elastic thin plate with its middle surface occupy-
ing a 2D domain V with boundary S (Fig. 1). The deflection wðxÞ
of the plate is governed by the following biharmonic equation
[24]:

Dr4wðxÞ ¼ qðxÞ, xAV ð1Þ

where D¼ Eh3=12ð1�n2Þ is the bending rigidity, E Young’s mod-
ulus, n Poisson’s ratio, h the thickness, and q a distributed load in
the lateral direction. The bending and twisting moments Mij are
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Fig. 1. A domain V with boundary S.
related to the deflection w by the following relationship (index
notation is used in this paper when it is convenient):

Mij ¼�D nw,kkdijþð1�nÞw,ij
� �

ð2Þ

where ð Þ,i ¼ @ð Þ=@xi (i¼1 and 2) and summation over repeated
index is assumed. On boundary S, the bending and twisting
moments are given by:

Mn ¼Mijninj ¼�D nr2wþð1�nÞw,nn

h i
Mns ¼Mijnisj ¼�Dð1�nÞw,ns

�
ð3Þ

respectively, where ni and si are the direction cosines of the
outward normal n and tangential direction s of boundary S,
(Fig. 1), and no summation is assumed over n and s. On the
boundary, the shear force Qn and the Kirchhoff equivalent shear
force Kn are given by:

Qn ¼Mij,jni ¼�Dðr2wÞ,n

Kn ¼QnþMns,s ¼�Dðr2wÞ,nþMns,s

9=
; ð4Þ

respectively, where no summation over s is assumed in the
second equation.

The governing Eq. (1) is solved under given boundary condi-
tions to obtain the deflection w of the plate. Once w is known, the
bending and twisting moments and shear forces can be deter-
mined by Eqs. (2)–(4).

Governing Eq. (1) can be transformed into a set of integral
equations, based on the following fundamental solution wnðx,yÞ
for plate bending problems, which satisfies the following govern-
ing equation:

Dr4wnðx,yÞ ¼ dðx,yÞ, x,yAR2
ð5Þ

where r4
ð Þ ¼ ð Þ,iijj is taken at field point y, dðx,yÞ is the Dirac

d-function representing a concentrated unit force acting at source
point x in the lateral direction, and R2 is the full 2D space. The
expression of the fundamental solution wnðx,yÞ is given by
[1,5–8]:

wn ¼wn x,yð Þ ¼
1

8pD
r2log r ð6Þ

where r¼ 9y�x9, and x and y can be any two points in the 2D
space. The solution wn represents the deflection of an infinitely
large plate at y due to the unit force acting at x.

Substituting Eq. (6) into Eqs. (2)–(4) and taking derivatives at
field point y, we obtain the following expressions for the rotation
(or normal slope), bending moment and Kirchhoff equivalent
shear force, respectively, corresponding to the fundamental solu-
tion wnðx,yÞ [1,5–8]:

yn x,yð Þ ¼
@wn

@n
¼

1

8pD
1þ2 log rð Þr cosb ð7Þ

Mn

n x,yð Þ ¼�
1

8p 2 1þnð Þ 1þ log rð Þþ 1�nð Þ cos 2b
� �

ð8Þ

Kn

n x,yð Þ ¼�
1

4pr
2þ 1�nð Þcos 2b
� �

cos bþ
1�n
4pr cos 2b ð9Þ

where cos b¼ r,kðyÞnkðyÞ with b being the angle between direc-
tion r and n, and 1=r is the curvature of the boundary curve S at
point y (which is positive when the center of the curvature is on
the opposite side of normal n).

Applying the Rayleigh-Green identity with w and wn:Z
V

wr4wn�wnr
4w

h i
dVðyÞ

¼

Z
S

wðr2wnÞ,n�wnðr
2wÞ,nþwn,nr

2w�w,nr
2wn

h i
dSðyÞ ð10Þ
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and the following identity [1,6]:

R
S wðr2wnÞ,n�wnðr

2wÞ,nþwn,nr
2w�w,nr

2wn

h i
dSðyÞ

¼
1

D

Z
S

wnKn�Kn

nwþMn

ny�y
nMn

� �
dS yð Þ ð11Þ

for a smooth boundary S, one can derive the following first
(deflection or singular) integral equation for thin plate bending
problems [1,5–8]:Z

S
wnKn�Kn

nwþMn

ny�y
nMn

� �
dS yð Þþ

Z
V

wnqdVðyÞ

¼

wðxÞ, xAV ;
1
2 w xð Þ, xAS smoothð Þ;

0, x=2V [ S

8><
>: ð12Þ

in which y¼ @w=@n¼ yðyÞ, Mn ¼MnðyÞ, and Kn ¼ KnðyÞ are the
rotation, bending moment, and Kirchhoff equivalent shear force,
respectively, corresponding to the deflection field wðyÞ. We only
consider plates with smooth boundaries in this paper for simpli-
city. The jump (discontinuous) terms [1,5–8] at possible corners
of a plate are therefore not present. These jump terms do not
affect the analytical results to be derived and the numerical
results to be presented in this paper.

The second (rotation or hypersingular) integral equation is
given by [1,5–8]:Z

S
wn,xKn�Kn

n,xwþMn

n,xy�y
n,xMn

� �
dS yð Þþ

Z
V

wn,xqdVðyÞ

¼

w,xðxÞ, xAV ;
1
2 w,x xð Þ, xAS smoothð Þ;

0, x=2V [ S

8><
>: ð13Þ

in which x indicates a direction associated with the source point x
(Fig. 1). On the boundary S, we have x¼ nðxÞ and w,xðxÞ ¼ yðxÞ.

When xAS, Eqs. (12) and (13) are the BIEs which can be
applied to solve for the two unknown boundary values among
w, y, Mn and Kn under given boundary conditions. Once all the
boundary values are known, Eqs. (12) and (13) with xAV (also
called representation integrals) can be applied to evaluate the
deflection and rotation of the plate inside domain V.
3. Identities for the fundamental solution

We derive four integral identities for the fundamental solution
wnðx,yÞ using the integral Eqs. (12) and (13) first. These results are
very similar to the ones for the fundamental solutions of the
potential and elasticity problems [12–14].

For governing Eq. (1) with q¼0, the expression

wðxÞ ¼ c

where c is an arbitrary constant representing a rigid-body
translation of the plate, is a solution of Eq. (1). Thus, wðxÞ ¼ c

should also satisfy integral Eqs. (12) and (13) with q¼0. Sub-
stituting wðxÞ ¼ c with y¼Mn ¼ Kn ¼ 0 into Eq. (12), we obtain the
first identity for the fundamental solution:

Z
S

Kn

nðx,yÞdS yð Þ ¼

�1, xAV ;

� 1
2 , xAS smoothð Þ;

0, x=2V [ S

8><
>: ð14Þ

The physical meaning of this identity is clear, that is, the
Kirchhoff equivalent shear force on a contour S must be in
equilibrium with the unit concentrated force at the source point
x and within the domain enclosed by S.
Substituting wðxÞ ¼ c with y¼Mn ¼ Kn ¼ 0 into Eq. (13), we
obtain the second identity for the fundamental solution:Z

S
Kn

n,xðx,yÞdSðyÞ ¼ 0, xAR2
ð15Þ

which can also be derived by taking the derivative of the first
identity with respect to x at x.

Similarly, a linear solution or a deflection due to a rigid-body
rotation in the following form:

wðyÞ ¼ dkðyk�ykÞ

also satisfies governing Eq. (1) with q¼0, where dk is the
component of an arbitrary vector and yk are the coordinates of a
reference point y on the 2D plane. Therefore, substituting
wðyÞ ¼ dkðyk�ykÞ with yðyÞ ¼ @w=@n¼ dk@yk=@n¼ dknkðyÞ and
Mn ¼ Kn ¼ 0 into Eq. (12), we obtain the third identity for the
fundamental solution:R

S Mn

nðx,yÞnkðyÞ�Kn

nðx,yÞðyk�ykÞ
� �

dSðyÞ

¼

ðxk�ykÞ, xAV ;
1
2 xk�yk

� �
, xAS smoothð Þ;

0, x=2V [ S

8><
>: ð16Þ

Similarly, substituting wðyÞ ¼ dkðyk�ykÞ with yðyÞ ¼ dknkðyÞ
and Mn ¼ Kn ¼ 0 into Eq. (13), we obtain the fourth identity for
the fundamental solution:R

S Mn

n,xðx,yÞnkðyÞ�Kn

n,xðx,yÞðyk�ykÞ
� �

dSðyÞ

¼

xk, xAV ;
1
2xk, xAS smoothð Þ;

0, x=2V [ S

8><
>: ð17Þ

where xk is the direction cosine of x. This can also be derived by
taking the derivative of the third identity with respect to x at x=2S

and go through a limit process for the result at xAS.
Note that in all the four identities, the normal n is the outward

normal of the domain enclosed by the closed curve S. Therefore,
to apply these identities, the normal must be consistent with this
definition. In the results for potential and elasticity problems
[12–14] corresponding to identities (16) and (17), the reference
point y is selected as the same as the source point x, that is,
yk ¼ xk and thus simpler or results of special cases are obtained
[12–14].

These four identities can also be derived by directly integrating
governing Eq. (5) for the fundamental solution, as in the cases of
potential and elasticity problems [12–14], without using integral
Eqs. (12) and (13) and introducing the rigid-body motion (or
simple) solutions. To show this, we integrate the governing Eq. (5)
over a domain V to writeZ

V
Dr4wnðx,yÞdVðyÞ ¼

Z
V
dðx,yÞdVðyÞ ð18Þ

Applying the Gauss theorem and the relationship in Eq. (4), the
left-hand side is evaluated as

R
V Dr4wnðx,yÞdVðyÞ ¼D

R
V wn,iijjdVðyÞ ¼D

R
Swn,iijnjdSðyÞ

¼D

Z
S
ðr

2wnÞ,ndSðyÞ ¼

Z
S
�Kn

nþMn

ns,s

� �
dSðyÞ ¼ �

Z
S

Kn

ndSðyÞ

Substituting this result into Eq. (18) and applying the sifting
property for Dirac d-function [14,25], we obtain the first identity
(14). Taking the derivative of Eq. (5) with respect to a direction x
at x and integrate at y over domain V, we can also obtain the
second identity (15).
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Next, we multiply both sides of Eq. (5) by ðyk�ykÞ and integrate
over domain V to writeZ

V
ðyk�ykÞDr

4wnðx,yÞdVðyÞ ¼

Z
V
ðyk�ykÞdðx,yÞdVðyÞ ð19Þ

The left-hand side is evaluated asZ
V
ðyk�ykÞDr

4wnðx,yÞdVðyÞ ¼D

Z
V
ðyk�ykÞw

n,iij

� �
,jdVðyÞ�D

Z
V

wn,iikdVðyÞ

¼D

Z
S
ðyk�ykÞw

n,iij
� �

njdSðy
�
�D

Z
S

wn,iinkdSðyÞ

¼D

Z
S

�
yk�ykÞ r

2wn

� �
,n�nkr

2wn

h i
dSðyÞ

Applying the results in Eq. (11) with w¼ yk�yk, w,n ¼
y¼ nk, r2w¼Mn ¼ Kn ¼ 0, the above expression becomesZ

V
ðyk�ykÞDr

4wnðx,yÞdVðyÞ ¼

Z
S

Mn

nnk�Kn

nðyk�ykÞ
� �

dSðyÞ

Substituting this result into Eq. (19) and applying the sifting
property for Dirac d-function [14,25], we obtain the third identity
(16). Taking the derivative of Eq. (5) with respect to a direction x
at x, multiplying the result by ðyk�ykÞ and integrating over
domain V, we can also derive the fourth identity (17).

The four integral identities in Eqs. (14)–(17) can be applied
to derive the weakly-singular and nonsingular forms of BIEs
(12) and (13) with xAS for plate bending problems, as in the
cases of the BIEs for potential and elasticity problems [12–14].
They can also be employed to show the nonuniqueness of the
solutions of BIEs for multi-connected domains.
4. Nonuniqueness of the solution with the hypersingular BIE
for multi-connected domains

We now investigate the solutions of singular BIE (12) and
hypersingular BIE (13) for multi-connected domains (Fig. 2) to see
if the solutions are unique or not on the edge of a hole. To be
precise, by nonuniqueness we mean here that the HBIE can admit
an arbitrary constant on the edge of a hole in the solution of a
multi-connected domain plate bending problem. This solution can
be obtained by other means, for example, by using the BEM, FEM
or analytical methods.

In Fig. 2, So is the outer boundary and Si is a typical internal
boundary which is not constrained (for example, the free edge of
a hole in a plate).
2
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Fig. 2. A multi-connected domain V with outer boundary So and inner boundary Si

So [ Si ¼ Sð Þ.
Assume wðyÞ is a solution to BIE (12) or BIE (13). We consider
the following function:

~wðyÞ ¼
wðyÞ, yASo;

wðyÞþ cþdkðyk�ykÞ
� �

, yASi

(
ð20Þ

obtained by adding a rigid-body translation c and rotation
dkðyk�ykÞ to wðyÞ on Si. The rotation represented by dkðyk�ykÞ is
about a line that passes through the point ðy1,y2Þ and is normal
to the vector dk. We assume that this rigid-body solution also
extends into the domain so that the corresponding normal
derivative is calculated as dknkðyÞ.

We first investigate if the expression for ~wðyÞ in Eq. (20) is also
a solution of BIE (12). To do this, substituting ~wðyÞ into BIE (12)
with xASo first, we haveZ

So[Si

wnKn�Kn

nwþMn

ny�y
nMn

� �
dS yð Þþ

Z
V

wnqdVðyÞ

þ

Z
Si

�Kn

n cþdkðyk�ykÞ
� �

þMn

n dknkðyÞð Þ
� �

dS yð Þ ¼
1

2
w xð Þ, xASo

which is reduced to

�c

Z
Si

Kn

ndSðyÞþdk

Z
Si

Mn

nnkðyÞ�Kn

nðyk�ykÞ
� �

dSðyÞ ¼ 0, xASo ð21Þ

by applying BIE (12) for w. The above equation is satisfied by
using first identity (14) and third identity (16) applied to the
domain enclosed by Si with x outside this domain. Notice that
when the direction of the normal is reversed (Fig. 3(b), here, for
simplicity, the same symbol n is used for the reversed normal),
which is required before we can apply the identities, Kn

n given by
Eq. (9) changes the sign, while Mn

n given by Eq. (8) does not.
Similarly, substituting ~wðyÞ into BIE (12) with xASi, we have

�c

Z
Si

Kn

ndS yð Þþdk

Z
Si

Mn

nnkðyÞ�Kn

nðyk�ykÞ
� �

dS yð Þ

¼
1

2
cþdkðxk�ykÞ
� �

, xASi

by applying BIE (12) for w. After reversing the direction of the
normal (Fig. 3(b)), this equation is changed to

c

Z
Si

Kn

ndS yð Þ�
1

2

	 

�dk

Z
Si

Mn

nnkðyÞ�Kn

nðyk�ykÞ
� �

dS yð Þþ
1

2
xk�yk

� �� �
¼ 0, xASi

Using first identity (14) and third identity (16), we have from
the above result

c �
1

2
�

1

2

	 

�dk

1

2
xk�yk

� �
þ

1

2
xk�yk

� �	 

¼ 0, xASi

or

cþdkðxk�ykÞ ¼ 0, xASi ð22Þ

This cannot be satisfied with arbitrary values of c, dk and xk,
unless c¼ 0 and dk ¼ 0. This shows that the singular or deflection
BIE solution does not admit any rigid-body translation or rotation
term on the edge of a hole. Therefore, the singular BIE solution is
unique on these edges in multi-connected domains.
y
iS

ny
iS

n

Fig. 3. Switching the direction of the normal on Si before applying the identities.
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Next, substituting ~wðyÞ into BIE (13) with xASo, we have

�c

Z
Si

Kn

n,xdS
�

yÞþdk

Z
Si

Mn

n,xnkðyÞ�Kn

n,xðyk�ykÞ
� �

dSðyÞ ¼ 0, xASo

ð23Þ

by applying BIE (13) for w, which is satisfied using second identity
(15) and fourth identity (17) after reversing the direction of
normal n on Si.

Similarly, substituting ~wðyÞ into BIE (13) with xASi, we have

�c

Z
Si

Kn

n,xdS yð Þþdk

Z
Si

Mn

n,xnkðyÞ�Kn

n,xðyk�ykÞ
� �

dS yð Þ ¼
1

2
dkxk, xASi

by applying BIE (13) for w. This equation is reduced to

dk

Z
Si

Mn

n,xnkðyÞ�Kn

n,xðyk�ykÞ
� �

dS yð Þþ
1

2
xk

� �
¼ 0, xASi

by applying second identity (15) and reversing the directions
of normals n and x on Si (Fig. 3(b)). Note that the sign of Mn

n,x
changes, while the sign of Kn

n,x does not, when the two normals
are switched. From fourth identity (17) the above expression is
R

r

y

x

Fig. 4. A circular plate with a center hole.
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Fig. 5. Computed maximum deflection for
further reduced to

dk
1

2
xkþ

1

2
xk

� �
¼ 0, xASi

or

dkxk ¼ 0, xASi ð24Þ

Eq. (24) cannot hold because xk changes its value on Si.
Therefore, we must conclude that dk ¼ 0. That is, the hypersin-
gular BIE (13) solution can contain an arbitrary rigid-body
translation c on the edge of a hole, but cannot contain any
rigid-body rotation term. We conclude that the solution of BIE
(13) is not unique on the edges of holes in multi-connected
domains.

The above observations and proofs have not been reported in
the literature for the BIEs related to the plate bending problems.
This defect related to the hypersingular or traction BIEs for multi-
connected domains has been reported in Refs. [15,16] for elasti-
city problems and in Refs. [17,18] for Stokes flow problems. In
Ref. [15], an integral representation for the domain enclosed by the
hole is applied to determine the unknown constant displacement in
8000 10000 12000 14000 16000

DOFs

BEM Solution

FEM Solution

the circular plate with a center hole.

y

x

Fig. 6. A circular plate with an off-center hole.
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the solution on edge of the hole for the original traction BIE for the
multi-domain problems. A few selected constraints on the edge of a
hole are also introduced in order to remove the rigid-body motion in
the solution of the traction BIE. In Ref. [16], it is proposed to apply
the displacement BIE in the Galerkin BEM, instead of the traction
BIE, on the traction-free edge of a hole, in order to avoid the
nonuniqueness of the displacement solution of the traction BIE.
For Stokes flow problems, a dual BIE formulation using a linear
combination of the singular and hypersingular BIEs is suggested in
Refs. [17,18].

However, a remedy to the above nonuniqueness problem has
already been used in the BIE formulation for plate bending
problems, since both the singular (deflection) BIE (12) and the
hypersingular (rotation) BIE (13) are required in solving plate
bending problems using the BIEs. The plate bending BIE formula-
tion is another type of dual BIE formulations [17,18] that again
demonstrate their robustness and benefits in the BEM, even they
are sometimes unnoticed.
y

x

Fig. 8. A circular plate with four holes.
5. Numerical examples

Although the theory has confirmed that the solution of the
dual BIE for plate bending problems yields unique solutions for
plates with holes when modeled with the BEM, it is necessary to
support this assertion with a few examples. To the authors’ best
knowledge, there are very few examples of plates with holes
reported in the BEM literature. A square plate with a square hole
was solved with the BEM first by Hartmann ([26], p. 282) and
later by Aliabadi ([11], p. 151). The BEM results for the deflection
and bending moment along selected cross sections inside the
domain were compared with the FEM results. Reasonable agree-
ments between the BEM and FEM results were obtained. Similar
results were obtained by Paris and Leon using a circular plate
with a circular hole [27]. However, in all these studies, the BEM
deflection solutions on edges of the holes were not reported.
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Whether or not the BEM solutions on the edges contain arbitrary
rigid-body translation displacements is not known, since these
rigid-body solutions on edges do not affect the results inside the
domain. Therefore, concerns remain with the BIE solutions for
plates with holes. Further examples are necessary.

Four examples are given in this section to show the correct-
ness of the BIE formulation for solving plate bending problems
using plates with holes. In all the examples, Young’s modulus
E¼70 GPa, Poisson’s ratio n¼ 0:3, thickness of the plate h¼

0:05 m, and the same uniform distributed load q¼ 0:1 MPa is
applied. The domain integrals in BIEs (12) and (13) involving the
distributed load q are converted into boundary integrals before
the BEM discretizations. Constant line elements are applied in the
BEM, where all the singular and hypersingular integrals are
calculated analytically based on the definitions of the CPV and
HFP integrals [18], respectively. In each case, the BEM solution
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of the deflection on the edge of a hole is reported and comparison
with the FEM solution is shown.
5.1. A circular plate with a center hole

We first consider a circular plate of radius R¼ 1 m with a
center hole of radius r¼ 0:25 m (Fig. 4) to see if there is any
constant value in the deflection solution on the edge of a hole
using the BIEs. The outer boundary of the plate is simply
supported and the inner boundary (edge of the hole) is free.
Under the uniform distributed load q, the maximum deflection is
on the edge of the hole. The BEM results are obtained with several
meshes and compared with the FEM (ANSYSs) solutions using
4-node shell elements. A comparison of the convergence of the
BEM and FEM solutions is shown in Fig. 5, and good agreement is
observed. Both the BEM and FEM solutions converged as the
numbers of the elements are sufficiently large. This suggests that
no constant value presents in the deflection solution on the edge
of the hole using the BEM.
y

x

Fig. 10. A square plate with four holes.
5.2. A circular plate with an off-center hole

Next we consider the circular plate with an off-center hole as
shown in Fig. 6 to further investigate if there are any constant
translation and/or rotation terms in the BEM solution of the edge
of a hole. The radius of the plate is R¼ 1 m, the radius of the hole
is r¼ 0:15 m, and the hole is centered at x¼ y¼ 0:4 m. Again the
plate is simply supported on the outer boundary and the edge of
the hole is free. Fig. 7 shows the computed values of the deflection
on the edge of the hole using the BEM and compared with those
using the FEM. A total of 3240 line elements are used in the BEM
model and a total of 12,610 shell elements are used in the FEM
model for this comparison study. Very good agreement between
the BEM results and FEM results is achieved as shown in Fig. 7,
which further suggests that the BEM solution is uniquely deter-
mined on the edge of the hole.
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5.3. A circular plate with four holes

A circular plate with four circular holes are considered next.
The plate has the same dimensions as in the previous case, except
for the addition of three more holes in the second, third and
fourth quadrants (Fig. 8). The plate is simply supported on the
outer boundary, while the edges of all four holes are free. As in the
previous case, the values of the computed deflection on the edge
of the hole in the first quadrant using the BEM and FEM are
plotted in Fig. 9. For the BEM model 5960 line elements are used,
and for the FEM model 10,836 shell elements are used. In spite of
the increased complexity of the geometry of the plate, the
agreement of the BEM and FEM results are still very good as
shown in Fig. 9.
5.4. A square plate with four holes

Finally, a square plate with four circular holes (Fig. 10) is
analyzed using the BEM and the results are compared with those
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Fig. 11. Deflection on the edge of a hole for the square plate with four holes.
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using the FEM. The square plate has an edge length of 1 m, the
four holes have the same radius of 0.1 m and are centered at
x¼ y¼ 70:25 m. The outer boundary of the square plate is
simply supported while the edges of the four holes are free. The
same uniform distributed load q is applied to the plate. The BEM
model has 5600 line elements, while the FEM uses 12,480 shell
elements. Excellent agreement between the BEM and FEM results
are obtained as shown in Fig. 11, in which the values of the
computed deflection on the edge of the hole in the third quadrant
are plotted. Note that the BIEs we used do not have the corner
jump terms, which when included in the BIEs can further improve
the accuracy of the BEM solutions for domains with corners. One
argument for ignoring the corner terms is that one can always
consider that any sharp corners can be rounded off with curved
boundaries.

The above four examples show that the dual BIE formulation
for plate bending problems can provide unique solutions for
plates with multi-connected domains and excellent BEM results
can be obtained even with constant boundary elements. However,
as the number of holes increases (such as with a perforated plate),
the complexity of the geometry will present difficulties to both
the conventional BEM used here and the FEM as more and more
elements will be required in the analysis. The fast multipole BEM
will need to be employed in such cases as for the 2D elasticity
analysis of perforated plates [18,28]. The fast multipole BEM for
large-scale modeling of plate bending problems is being investi-
gated and will be reported in a follow-up paper.
6. Conclusion

Four integral identities for the fundamental solution of thin
plate bending problems are derived by using the rigid-body
solutions in the BIEs and by direct integration of the governing
equation for the fundamental solution. These identities can be
applied to derive weakly-singular and nonsingular forms of the
BIEs for plate bending problems, as has been done earlier with the
BIEs for potential and elasticity problems. These identities can
also be applied to show that the singular BIE solution is unique
while the hypersingular BIE solution is not unique on the edges of
holes in plates on multi-connected domains, which is reported for
the first time in this paper. It is proved that the solution of the
hypersingular BIE can have an arbitrary rigid-body translation
term on the edge of a hole, and therefore deflection solution is not
unique on the edge of the hole using the hypersingular BIE alone.
However, since both the singular and hypersingular BIEs are
required in solving a plate bending problem using the BEM, the
BEM solution is always uniquely determined on edges of holes for
multi-connected domains. The four examples of plates with holes
and solved with the BEM demonstrate the correctness and
effectiveness of the BEM based on the dual BIE formulation for
solving multi-connected domain problems.
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