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Abstract Based on a general, operational approach, two
new integral identities for the fundamental solutions of the
potential and elastostatic problems are established in this
paper. Non-singular forms of the conventional boundary
integral equations (BIEs) are derived by employing these
two identities for the fundamental solutions and the two-
term subtraction technique. Both the strongly- (Cauchy
type) and weakly-singular integrals existing in the con-
ventional BIEs are removed from the BIE formulations.
The existence of the non-singular forms of the conven-
tional BIEs raises new and interesting questions about the
smoothness requirement in the boundary element method
(BEM), since the two-term subtraction requires, theoreti-
cally, C1 continuity of the density function, rather than the
C0 continuity as required by the original singular or
weakly-singular forms of the conventional BIEs. Implica-
tion of the non-singular BIEs on the smoothness require-
ment will be discussed in this paper.

1
Introduction
Dealing with singular integrals, including the strongly-
singular (Cauchy principal value type) and hypersingular
(Hadamard ®nite part type) integrals, in the boundary
integral equation (BIE) formulations has been a seemingly
daunting task since the early days of the boundary element
method (BEM) (see (Jaswon 1963; Rizzo 1967)). A great
deal of research effort has been devoted to the subject of
how to accurately compute the singular integrals analyti-
cally or numerically. However, careful studies of the BIE
formulations have revealed that the BIEs can be recast in
weakly-singular forms which eliminate the calculations of
the singular integrals. This weakly-singular form of the
conventional BIE for elastostatic problems can be obtained
by using an integral expression for the coef®cient matrix

�Cij� of the free term in the BIE formulation (see, (Cruse
1974; Rizzo and Shippy 1977)). The process leading to the
weakly-singular form of the BIE demonstrates that the
strongly-singular integrals in the BIE can be cancelled out
completely if they have been identi®ed. The utilization of
the fundamental solutions, which are the origin of the
singularity, in the BIEs should not necessarily give rise to
singular formulations for the physical problems which, in
most cases, are not singular at all in the ®rst place.

The weakly-singular nature of the BIEs is quite general,
not just limited to the formulation of elastostatic prob-
lems. Rudolphi (Rudolphi 1991) generalized the simple
solution approach to obtain some identities for the fun-
damental solutions and have applied them in the deriva-
tions of the weakly-singular forms of the conventional and
hypersingular BIEs. In this approach, simple solutions or
modes of the problem (such as the rigid-body translation
and rotation in the elastostatic case) are imposed on the
BIEs and result in certain identities for the fundamental
solutions. Two identities were developed and used in the
regularization of the hypersingular BIE for potential
problems in Ref. (Rudolphi 1991). A more general way to
establish the identities for the fundamental solutions was
developed in Ref. (Liu and Rudolphi 1991) based on an
operational approach. In this approach the governing
equations for the fundamental solutions are integrated
over an arbitrary closed domain, and Gauss' theorem and
the properties of the Dirac-delta function are employed to
transform the domain integrals to boundary ones. This
approach, although involving more mathematics, does not
depend on the availability of the BIE formulations of the
problems, offers more physical insights to the identities
for the fundamental solutions (equilibrium of the forces,
moments, etc.), and is applicable to both ®nite and in®nite
domains. The weakly-singular forms of the conventional
and hypersingular BIEs for potential and elastostatic
problems, in both ®nite and in®nite, 2-D or 3-D domains,
were readily established in Ref. (Liu and Rudolphi 1991).
The use of the identities in deriving the weakly-singular
forms of the BIEs, especially those of the hypersingular
BIEs (Krishnasamy, Rizzo et al. 1991), have been applied
successfully to stress analysis (Muci-Kuchler and Rudolphi
1993), acoustics (Liu and Rizzo 1992; Liu and Chen 1999),
elastodynamics (Liu and Rizzo 1993) and electromagnetics
(Chao, Liu et al. 1995). This approach has also been
adopted in others' work as well (see, e.g., (Tanaka, Sladek
et al. 1994; Johnston 1997)). This simple solution approach
is successfully applied in Ref. (Poon, Mukherjee et al.
1998) to nonlinear problems for regularizing the hyper-
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singular BIE for elastoplasticity. Most recently, this ap-
proach is developed in Ref. (Mukherjee, Shah et al. 1999)
for regularizing the hypersingular BIE for thermoelastic
fracture mechanics problems.

An intriguing and theoretical question is: What is the
implication or impact of the weakly-singular forms of the
BIEs on the smoothness requirement imposed to the
original BIEs? It has been shown (Krishnasamy, Rizzo et al.
1992; Martin and Rizzo 1996) and gradually accepted in
the BEM community (see, e.g., (Tanaka, Sladek et al.
1994)) that for the strongly-singular or hypersingular in-
tegrals to exist in the limit as the source point goes to the
boundary, the density function or its derivatives, respec-
tively, must be HoÈlder continuous (at least in the neigh-
borhood of the source point). This means that
theoretically only boundary element implementations that
ensure the C0, or C1, continuity near each collocation
point can be applied in the discretizations of the conven-
tional, or hypersingular, BIEs, respectively. In the hyper-
singular BIE case, this stringent (C1 continuity)
requirement has seriously hindered the applications of the
hypersingular BIEs. Two questions are then obvious:
(1) Do the various weakly-singular forms of the BIEs
change the smoothness requirement? (2) If the answer to
the previous question is ``no'', then can we relax the
smoothness requirement in the implementation of the
various weakly-singular forms of the BIEs?

Relaxation of this continuity requirement on hyper-
singular BIEs has been attempted by several authors using
the conforming (C0) elements for different problems (see,
e.g., (Chien, Rajiyah et al. 1990; Wu, Seybert et al. 1991;
Liu and Rizzo 1992; Cruse and Suwito 1993; Huang and
Cruse 1994; Cruse and Richardson 1996). The validation of
this relaxation received renewed attention recently (Rich-
ardson, Cruse et al. 1997; Liu and Chen 1999; Martin, Ri-
zzo et al. 1998) due to a strong desire to do so in the BEM
community.

The existence of the non-singular forms of the con-
ventional BIEs, developed in this paper, raises new and
interesting questions about the smoothness requirement in
the BEM, since the two-term subtractions require, theo-
retically, C1 continuity of the density functions, rather
than the C0 continuity as required by the original singular
or weakly-singular forms of the conventional BIEs. A
feasible remedy to avoid this dilemma is to adopt the re-
laxation strategy (piecewise smoothness) in the discreti-
zations of the developed non-singular BIEs. This
relaxation in the piecewise sense may clear some of the
confusions in the smoothness issue and help broaden the
applications of the various weakly-singular or non-singu-
lar forms of the BIEs, including the hypersingular BIEs.
However, the convergence study, especially a theoretical
one, or a counter-example showing divergence, for the
relaxation strategy is still urgently needed before the
smoothness issue in the BEM can be ®nally settled.

The remaining part of this paper consists of three major
sections. In Sect. 2, the three integral identities for the
fundamental solutions developed in Ref. (Liu and Ru-
dolphi 1991) for potential and elastostatic problems will be
reviewed. Then, one new integral identity for each of the
potential and elastostatic problems will be established

based on the operational approach. In Sect. 3, non-sin-
gular forms of the conventional BIEs will be derived by
employing these two new integral identities. In Sect. 4, the
implication of these non-singular forms of the BIEs, which
require theoretically a higher order (C1) continuity of the
density function, to the smoothness requirement in the
BEM will be discussed.

2
Two new integral identities for the fundamental solutions
Consider a closed domain V in the in®nite space Rm, with
m � 2 or 3 for two- or three-dimensional space, respec-
tively, Fig. 1. In Ref. (Liu and Rudolphi 1991) (see, also
(Rudolphi 1991)), we have established the following three
integral identities for the fundamental solution G�P; Po� of
the potential problem (index notation is used in this pa-
per):

The ®rst identityZ
S

oG�P; Po�
on

dS�P� � ÿ1; 8 Po 2 V;
0; 8 Po 2 E :

�
�1�

The second identityZ
S

o2G�P; Po�
onono

dS�P� � 0; 8 Po 2 V [ E : �2�

The third identityZ
S

oG�P; Po�
ono

nk�P�dS�P� ÿ
Z

S

o2G�P; Po�
ono no

�xk ÿ xok�dS�P�

� nok�Po�; 8 Po 2 V ,

0; 8 Po 2 E;

�
�3�

where S � oV; E � Rm ÿ �V [ S�, nk the directional co-
sines of the normal n of S at the ®eld point P �xk�, nok the
direction cosines of a unit vector no at the source point
Po�xok�, Fig. 1. These integral identities are derived by
integrating the following governing equation (and its de-
rivative) for the fundamental solution G�P; Po�:
r2G�P; Po� � d�P; Po� � 0; 8 P; Po 2 Rm ; �4�
over the domain V and with the source point Po either
inside or outside V, where d�P; Po� is the Dirac-delta
function.

E n

no

V
S

r

P(x )k

P (x )o ok

Fig. 1. A 3-D closed domain V in R3 with boundary S (exterior
domain E � R3 ÿ �V [ S�
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Similarly, the following three integral identities for the
fundamental solution Uij�P; Po� (Kelvin solution) of the
elastostatic problem have also been established in (Liu and
Rudolphi 1991):

The ®rst identityZ
S

Tij�P; Po�dS�P� � ÿdij; 8 Po 2 V;
0; 8 Po 2 E :

�
�5�

The second identityZ
S

oTij�P; Po�
oxok

dS�P� � 0; 8 Po 2 V [ E : �6�

The third identity

Ejlpq

Z
S

oUiq�P; Po�
oxok

np�P�dS�P�

ÿ
Z

S

oTij�P; Po�
oxok

�xl ÿ xol�dS�P� � dijdkl; 8 Po 2 V;

0; 8 Po 2 E ;

�
�7�

where Tij�P; Po� is the traction kernel corresponding to the
displacement kernel Uij�P; Po�, Eijkl the elastic modulus
tensor and dij the Kronecker delta. These three identities
for the elastostatic problem are derived by integrating the
following governing equations (and their derivatives) for
the fundamental solution Uij�P; Po�:
Rijk;k�P; Po� � dijd�P; Po� � 0; 8 P; Po 2 Rm ; �8�
where Rijk�P; Po� � EjkpqUip;q�P; Po� is the stress tensor in
the fundamental solution.

Although the integral identities in (1)±(3) for the po-
tential problem and in (5)±(7) for the elastostatic problem
can also be derived by imposing certain type of simple
solutions, such as rigid-body translations, to the corre-
sponding boundary integral representations (Cruse 1974;
Rizzo and Shippy 1977; Rudolphi 1991), the operational
approach developed in (Liu and Rudolphi 1991) and based
on the original governing equations seems to be more
general and can offer more insights into the BIE formu-
lations. First, the operational approach does not depend
on the availability of the BIE for a given problem or the
explicit expression of the fundamental solution. Second,
the physical meaning (equilibrium of forces, moments,
and so on) of these integral identities (Liu and Rudolphi
1991) can be identi®ed easily from their derivations using
this operational approach. Third, the identities derived
from the operational approach are applicable to both the
®nite and in®nite domain problems, while the simple so-
lution approach can only be applied to a ®nite domain
since the rigid-body motion cannot be imposed to an in-
®nite domain directly.

The integral identities in (1)±(3) and (5)±(7) for the
fundamental solutions have been employed successful in
the development of the weakly-singular forms of both
conventional and hypersingular BIEs for potential,
elastostatic, acoustic, elastodynamic and electromagnetic
problems (Rudolphi 1991; Liu and Rudolphi 1991; Liu and
Rizzo 1992; Liu and Rizzo 1993; Muci-Kuchler and Ru-
dolphi 1993; Chao, Liu et al. 1995; Liu and Chen 1999), for

elastoplasticity (Poon, Mukherjee et al. 1998) and the-
rmoelasticity (Mukherjee, Shah et al. 1999), and refer-
enced by others (see, e.g., (Tanaka, Sladek et al. 1994;
Johnston 1997)). Using these identities offers a general and
systematic approach to the development of the weakly-
singular forms of the BIEs, as compared to the earlier
approach where the explicit expressions of the funda-
mental solutions need to be exploited in great length in
order to cancel the singularities in the BIEs (see, e.g.,
(Rudolphi, Krishnasamy et al. 1988)).

The process developed in (Liu and Rudolphi 1991) to
establish the identities for the fundamental solutions can
be applied to obtain more identities which are only found
useful recently. We will derive the following two new in-
tegral identities for the fundamental solutions of the po-
tential and elastostatic problems and later show how to use
them to establish the non-singular forms of the corre-
sponding conventional BIEs in the next section:

The fourth identity for the potential problemZ
S

oG�P; Po�
on

�xk ÿ xok�dS�P�ÿ
Z

S

G�P; Po�nk�P�dS�P�
� 0; 8 Po 2 V [ E ; �9�

and the fourth identity for the elastostatic problemZ
S

Tij�P; Po��xk ÿ xok�dS�P�

ÿ Ejkpq

Z
S

Uip�P; Po�nq�P�dS�P� � 0; 8 Po 2 V [ E :

�10�
As for the ®rst three identities in (1)±(3) and (5)±(7), the
domain V for these two new identities is an arbitrary
(closed) domain in Rm. Therefore, S is an arbitrary
(closed) surface in 3-D or curve in 2-D, which does not
necessarily coincide with the real boundary of the problem
domain under consideration (Liu and Rudolphi 1991).

To derive identity (9), we multiply Eq. (4) by �xk ÿ xok�
and then integrate both sides over the domain V:Z

V

�xk ÿ xok�G;jj dV�P�

�
Z

V

�xk ÿ xok�d�P; Po�dV�P� � 0; 8 Po 2 V [ E ;

�11�
where G;jj � o2G=oxjoxj � r2G. By the sifting property of
the Dirac-delta function (see, e.g., (Zemanian 1987)), the
second integral in (11) vanishes and the ®rst one can be
evaluated as follows:Z

V

�xk ÿ xok�G;jj dV�P�

�
Z

V

��xk ÿ xok�G; j

�
;jdV�P� ÿ

Z
V

�xk ÿ xok�;jG;j dV�P�

�
Z

S

�xk ÿ xok�G;jnj dS�P� ÿ
Z

S

dkjGnj dS�P�

�
Z

S
�xk ÿ xok� oG

on
dS�P� ÿ

Z
S

Gnk dS�P� ;
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where the Gauss' theorem in the sense of generalized
functions has been applied (Liu and Rudolphi 1991).
Substituting this result into (11), we obtain the fourth
identity (9) for the potential problem.

To derive identity (10) for the elastostatic problem, we
multiply Eq. (8) by �xl ÿ xol� and then integrate both sides
over V:Z

V
�xl ÿ xol�Rijk;k�P; Po�dV�P�

�
Z

V

�xl ÿ xol�dijd�P; Po�dV�P� � 0; 8 Po 2 V [ E :

�12�
Again, the second integral vanishes due to the sifting
property of the delta function. The ®rst integral is evalu-
ated below:Z

V
�xlÿ xol�Rijk;k dV�P�

�
Z

V

�xlÿ xol�Rijk

� �
;k

dV�P�ÿ
Z

V

�xlÿ xol�;kRijk dV�P�

�
Z

S

�xlÿ xol�Rijknk dS�P� ÿ
Z

V

dkl EjkpqUip;q

� �
dV�P�

�
Z

S
�xlÿ xol�Tij dS�P� ÿ

Z
S

EjlpqUipnq dS�P� ;
where Tij � Rijknk and Rijk � EjkpqUip;q have been applied.
Substituting the above result into (12) and switching the
subscript l to k, we obtain the fourth identity (10) for the
elastostatic problem.

Note that in establishing these integral identities, the only
relations one has to exploit are the original governing dif-
ferential equations for the fundamental solutions and the
properties of the Dirac-delta functions representing the
unit, concentrated source. One does not need to know
the explicit expressions of the fundamental solutions, or the
related BIE formulations of the problems. In fact, more in-
tegral identities for the fundamental solutions can be de-
rived readily and systematically using the process described
above and in (Liu and Rudolphi 1991), if they are deemed
useful in the applications of the boundary element method.
In general, all the integral identities for the fundamental
solution of the potential problem can be derived by starting
with the following integration of the governing equation:Z

V

�xk ÿ xok�a ob

oxb
oi

r2G� d�P; Po�
� �

dV�P� � 0;

8 Po 2 V [ E ;

where a; b � 0; 1; 2; 3; . . .. A similar starting integral ex-
pression exists for the elastostatic problem. The ®rst four
identities we have derived so far are corresponding to the
combinations of a; b � 0 or 1.

The two new identities (9) and (10) for the fundamental
solutions of the potential and elastostatic problems, re-
spectively, can also be derived by using the simple solution
idea as developed in Ref. (Rudolphi 1991). This will be
discussed in the next Section after the corresponding BIEs
are presented. These two identities will be employed to
establish the non-singular forms of the conventional BIEs

in the next section, just as the case that the identities (1)±
(3) and (5)±(7) have been applied readily to develop the
weakly-singular forms of the conventional and hypersin-
gular BIEs (Liu and Rudolphi 1991).

3
The non-singular forms of the conventional BIEs

3.1
Potential problem
We start with the following integral representation for the
potential problem:

/�Po� �
Z

S

G�P; Po� o/�P�
on
ÿ oG�P; Po�

on
/�P�

� �
dS�P�;

8 Po 2 V ; �13�
where / is the unknown potential satisfying the Laplace
equation r2/ � 0, G�P; Po� � 1=�4pr� or �1=2p� ln�1=r�
(with r being the distance from Po to P, Fig. 1) is the
fundamental solution for 3-D or 2-D problem, respectively.
It is interesting to note that if we impose the following
simple (linear) solution

/�P� � dk�xk ÿ xok� ;
where dk are arbitrary constants, in the above integral rep-
resentation, the new identity (9) is recovered, as expected.

Direct limit process as Po ! S in Eq. (13) leads to the
conventional BIE for the potential problem which contains
both weakly- and strongly-singular integrals. This singular
form of the BIE can be converted into the following
weakly-singular form readily using the integral identity (1)
(see, e.g., (Liu and Rudolphi 1991)):Z

S

oG�P; Po�
on

/�P� ÿ /�Po�� �dS�P�

�
Z

S

G�P; Po� o/�P�
on

dS�P�; 8 Po 2 S ;

for a ®nite domain, in which both integrals are weakly-
singular.

To further regularize the singular integral, we use the
following two-term subtraction for the second integral in
(13):Z

S

oG�P;Po�
on

/�P�dS�P�

�
Z

S

oG�P;Po�
on

�/�P�ÿ/�Po�

ÿ/;k�Po��xkÿ xok��dS�P��/�Po �
Z

S

oG�P;Po�
on

dS�P�

�/;k�Po�
Z

S

oG�P;Po�
on

�xkÿ xok�dS�P�

�
Z

S

oG�P;Po�
on

�/�P�ÿ/�Po�
ÿ/;k�Po��xkÿ xok��dS�P�ÿ/�Po �
�/;k�Po�

Z
S

G�P;Po�nk�P�dS�P�; 8Po 2V ;
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where the ®rst identity (1) and the new fourth identity (9)
have been applied. Substituting this result into the integral
representation (13) and rearranging the terms, we obtainZ

S

oG�P; Po�
on

/�P� ÿ /�Po� ÿ /;k�Po��xk ÿ xok�
� �

dS�P�

�
Z

S
G�P; Po� /;k�P� ÿ /;k�Po�

� �
nk�P�dS�P�;

8 Po 2 S ; �14�
where the limit of Po ! S has been taken. This is the non-
singular form of the conventional BIE for the potential
problem in a ®nite domain. For an in®nite domain, the
free term /�Po� will appear on the left-hand side of Eq. (14)
(cf., (Liu and Rudolphi 1991)). The two integrals in Eq.
(14) are regular even when P! Po�r ! 0� because the
singularities can be cancelled completely according to the
following estimates of the orders for all the terms (in 3-D):

oG�P; Po�
on

� O

�
1

r2

�
;

/�P� ÿ /�Po� ÿ /;k�Po��xk ÿ xok�
� � � O�r2�;

G�P; Po� � O

�
1

r

�
;

/;k�P� ÿ /;k�Po�
� � � O�r�; as r ! 0 ;

assuming that /�P� has continuous ®rst derivatives in the
neighborhood of the source (collocation) point Po. A dis-
cretization procedure similar to that as described in (Liu
and Rizzo 1992) can be employed in the discretization of
Eq. (14).

3.2
Elastostatic problem
The integral representation of the displacement ®eld for
the elastostatic problem is

ui�Po� �
Z

S

Uij�P; Po�tj�P� ÿ Tij�P; Po�uj�P�
� �

dS�P�;
8 Po 2 V ; �15�

where ui and ti are the displacement and traction ®elds,
respectively. Again, if we impose the following simple
solution (rotation ®elds)

ui�P� � dik�xk ÿ xok� ;
where dik are arbitrary constants, to the integral repre-
sentation (15), the new identity (10) for elastostatics is
recovered.

Similar to the potential problem, the following weakly-
singular form of the conventional BIEZ

S

Tij�P; Po� uj�P� ÿ ui�Po�
� �

dS�P�

�
Z

S

Uij�P; Po�tj�P�dS�P�; 8 Po 2 S ;

for a ®nite domain can be derived from (15) easily using
the ®rst identity (5) (see (Cruse 1974; Rizzo and Shippy
1977) and (Liu and Rudolphi 1991)).

To derive the non-singular form of the BIE, we use the
two-term subtraction for the density function in the
strongly-singular integral in (15) as follows:Z

S
Tij�P; Po�uj�P�dS�P�

�
Z

S

Tij�P; Po� uj�P� ÿ uj�Po�
� ÿuj;k�Po��xk ÿ xok�

�
dS�P�

� uj�Po�
Z

S

Tij�P; Po�dS�P�

� uj;k�Po�
Z

S

Tij�P; Po��xk ÿ xok�dS�P�; 8 Po 2 V :

Applying the ®rst identity (5) and the fourth identity (10)
in the above expression, we haveZ

S

Tij�P; Po�uj�P�dS�P�

�
Z

S

Tij�P; Po��uj�P�ÿ uj�Po� ÿ uj;k�Po��xk ÿ xok��dS�P�

ÿ ui�Po� � uj;k�Po�Ejkpq

Z
S

Uip�P; Po�nq�P�dS�P�

�
Z

S
Tij�P; Po��uj�P� ÿ uj�Po� ÿ uj;k�Po��xk ÿ xok��dS�P�

ÿ ui�Po� � rjk�Po�
Z

S

Uij�P; Po�nk�P�dS�P�; 8 Po 2 V ;

where Ejkpquj;k � Epqjkuj;k � rpq has been used in the last
step. Substituting this result into (15), rearranging the
terms and letting the source point Po ! S, we obtain the
following non-singular form of the conventional BIE for
the elastostatic problem:Z

S
Tij�P; Po� uj�P� ÿ uj�Po� ÿ uj;k�Po��xk ÿ xok�

� �
dS�P�

�
Z

S

Uij�P; Po� rjk�P� ÿ rjk�Po�
� �

nk�P�dS�P�;
8 Po 2 S ; �16�

which is valid for a ®nite domain. A free term ui�Po� needs
to be added to the left-hand side of Eq. (16) if it is applied
to an in®nite domain. Similar to the case of the potential
problem, singularities in the two kernels Uij and Tij are
cancelled out due to the use of Taylor's series expansions
for the density functions.

A striking phenomenon about the weakly-singular
and non-singular BIE formulations, as derived in (Liu
and Rudolphi 1991) and above using the identities for
the fundamental solutions, is that the two integrals are
regularized to weakly- or non-singular integrals at the
same time, as is also shown in Ref. (Cruse and Rich-
ardson 1996). The properties of the fundamental solu-
tions, as represented by the identities, play an important
role in achieving this regularization. Weakly-singular,
strongly-singular, or hypersingular integrals will be
cancelled out naturally, and completely, from both sides
of the BIE formulations by exploiting these identities.
All these results reveal the non-singular or weakly-sin-
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gular nature of the BIE formulations for the physical
problems which, in most cases, are not singular at all in
the ®rst place. The singularity in the fundamental so-
lutions, which has hindered the BEM research ever since
its beginning, is deceiving and should not lead to the
singularities of the BIE formulations, if the properties of
the fundamental solutions have been examined and
utilized.

4
Implication to the smoothness requirement for the BIEs
It is now well known that the theory imposes certain
continuity requirement on the density functions in the
boundary integral equations, in order for the limits of the
integrals as the source point approaching the boundary to
exist (Krishnasamy, Rizzo et al. 1992; Martin and Rizzo
1996). For example, in the case of potential problems, the
density function /�P� must be C0; a continuous for the
limit of the strongly-singular integral

lim
Po!S

Z
S

oG�P; Po�
on

/�P�dS�P�

to exist, and must be C1; a continuous for the limit of the
hypersingular integral

lim
Po!S

Z
S

o2G�P; Po�
onono

/�P�dS�P�

(no is the normal at the source point) to exist. This
smoothness requirement means that the density function
/�P�, or its derivatives, must be HoÈlder continuous in the
neighborhood of the source point Po in order for the
strongly-singular, or hypersingular, integrals to be mean-
ingful, respectively. This requirement imposes severe
limitations to the applications of BIEs. For example, this
smoothness requirement will exclude, theoretically, the
use of C0 boundary elements, such as the conforming
quadratic elements, in the discretizations of hypersingular
BIEs which have been found very useful for many prob-
lems in applied mechanics. Relaxation of this smoothness
requirement for the hypersingular BIEs, in either strongly-
singular or weakly-singular forms and with conforming C0

elements, have been attempted by several authors (see,
e.g., (Chien, Rajiyah et al. 1990; Wu, Seybert et al. 1991;
Liu and Rizzo 1992; Cruse and Suwito 1993; Huang and
Cruse 1994; Cruse and Richardson 1996)). The validation
of this relaxation has also been provided (Richardson,
Cruse et al. 1997; Liu and Chen 1999; Martin, Rizzo et al.
1998) due to the strong need to do this in the BEM com-
munity. It has been postulated in Ref. (Liu and Chen 1999)
that the original C1; a continuity requirement on the den-
sity function in the hypersingular BIE formulations can be
relaxed to piecewise C1; a continuity in the numerical im-
plementation of the weakly-singular forms of the hyper-
singular BIEs. This relaxation means that conforming
linear, quadratic, and other higher-order elements, as well
as nonconforming elements (including the constant ele-
ments), can be applied to the weakly-singular forms of the
hypersingular BIEs.

The existence of the non-singular forms of the con-
ventional BIEs raises perplexing, and yet intriguing,
questions about the smoothness requirement and its
relaxations. From the derivations of the non-singular
forms of the conventional BIEs for both potential and
elastostatic problems, as described in the previous sec-
tion, it is obvious that the density functions must have
continuous ®rst derivatives in order for the non-singular
forms to be meaningful. This means that, in theory, the
smoothness requirement for the density functions is, in
fact, tightened from C0; a to C1; a continuity for the non-
singular forms of the conventional BIEs. If we adhere to
this tightened smoothness requirement in the discreti-
zations of the non-singular forms of the conventional
BIEs, we would have to use nonconforming elements or
C1elements. This is certainly undesirable as in the case
of the hypersingular BIEs. However, if we adopt the
relaxation strategy used for hypersingular BIEs, that is,
relaxing the smoothness requirement to piecewise C1; a

continuity in the discretizations (Liu and Chen 1999),
the dilemma between the theory and the application can
be avoided. Similar to the argument in Ref. (Liu and
Chen 1999), computation of the integrals on an element
and containing the two-term subtraction of the density
functions, as in Eqs. (14) and (16), only requires that
the density functions are C1; a continuous on that ele-
ment. This leads to the argument of the piecewise
continuity in discretizations of the various BIEs. For
example, with this relaxation, we can still apply C0 el-
ements, such as the conforming linear and quadratic
elements, in the discretizations of the non-singular
forms of the conventional BIEs. Again, the convergence
study, either analytical or numerical, will be crucial in
the validation of this piecewise continuity argument (Liu
and Chen 1999). Numerical studies for 2-D elastostatic
and 3-D acoustic problems have shown that this relax-
ation can lead to converged results for the weakly-sin-
gular forms of the hypersingular BIEs with conforming
C0 elements (see, (Richardson, Cruse et al. 1997; Liu and
Chen 1999)).

From the above discussions, the following implications
from the existence of the non-singular BIE formulations
can be drawn: (1) Singular integrals, including weakly-
singular, strongly-singular and hypersingular ones, in the
BIE formulations can be removed completely by using the
identities for the fundamental solutions which are the
original source of the singularity. (2) The smoothness re-
quirement (C1 continuity) for the density functions in the
non-singular forms of the conventional BIEs is higher than
(thus tightened from) that (C0) for the original singular or
weakly-singular forms of the BIEs. However, if the relax-
ation strategy (Richardson, Cruse et al. 1997; Liu and Chen
1999; Martin, Rizzo et al. 1998) is adopted in the discret-
izations of the BIEs in these forms, the tightened
smoothness requirement may not necessarily hinder the
applications of such BIE formulations. (3) Convergence
study of the relaxation strategies is crucial and urgently
needed in order to ®nally settle the smoothness issue in the
BIE/BEM applications.
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Conclusion
Two new integral identities for the fundamental solutions
of the potential and elastostatic problems have been es-
tablished in this paper, based on a general, operational
approach which does not depend on the corresponding
BIEs. Non-singular forms of the conventional BIEs for
both potential and elastostatic problems have been de-
veloped by using these identities. The existence of these
non-singular forms of the conventional BIEs raises an
interesting question to the smoothness requirement in the
BIE formulations, that is, smoothness requirement for the
non-singular BIEs is in fact increased from C0 to C1 con-
tinuity for the density functions, due to the two-term
subtractions. A feasible remedy to this dilemma may be to
adopt the relaxation strategy, that is, to reduce the
smoothness requirement to that in the piecewise sense in
the discretizations of the non-singular BIEs. However, a
convergence study, especially a theoretical one, or a
counter-example showing divergence, for the relaxation
strategy is still urgently needed before the smoothness
issue in the BEM can be ®nally settled.

Numerical studies of the developed non-singular con-
ventional BIEs will be conducted to investigate their pos-
sible advantages over other forms of the BIEs. Extension of
the established approach to develop non-singular forms of
the conventional BIEs for other problems and the non-
singular forms of the hypersingular BIEs is readily
achievable, if these forms are found useful in the BEM
applications.
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