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Abstract
Repetitive wave analysis is required in various applications involving parametric analyses across different settings. However, 
traditional numerical methods based on domain discretization become computationally impractical due to the large number of 
simulations required, especially in unbounded domains. The boundary element method (BEM) is known for its effectiveness 
in solving wave equations, particularly in unbounded domains. Nevertheless, even with accelerated techniques, large-scale 
problems and those with high frequencies often necessitate numerous iterations, hampered by ill-conditioned system matrices. 
As a result, BEM becomes unsuitable for parametric analysis. To address these challenges, surrogate modelling techniques 
have been developed, and recent advancements in neural operators show promise in constructing surrogate models. How-
ever, they still face limitations when efficiently handling exterior and high-dimensional problems. In this study, we propose 
a novel data-driven surrogate modelling approach called B-FNO, which combines BEM and Fourier neural operator (FNO) 
for wave analysis in varying domains and frequencies. This approach formulates wave equations as integral formulations 
and utilizes FNO to map problem boundaries and other parameters to boundary solutions. Compared to existing surrogate 
modelling techniques, the B-FNO approach offers several advantages. These include reduced problem dimensionality and 
computational complexity, the ability to handle exterior problems without domain truncation, and significantly improved 
efficiency and accuracy compared to well-known neural network surrogate models. Moreover, compared to accelerated BEM, 
the B-FNO approach is better behaved and requires a much smaller number of iterations. We validate the effectiveness of 
our method through numerical experiments on a series of 2D and 3D benchmark problems, demonstrating its potential for 
broad application.
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1   Introduction

Wave analysis is of critical importance in various fields and 
applications, including noise control, ultrasound imaging, 
seismic engineering, and non-destructive testing. In many 
cases, it becomes necessary to conduct parametric analy-
sis, involving a series of analyses corresponding to different 
parameters. For instance, in the design of sound systems 

and broadband noise absorbers, frequency sweep analysis 
is often employed to evaluate their performance across a 
range of frequencies. Similarly, during the design of wave-
controlling metamaterials, repetitive wave analysis is con-
ducted to evaluate the performance of the design solution as 
it evolves throughout the design process [1, 2].

Conducting parametric wave analysis for complex engi-
neering problems, especially those involving unbounded 
and/or changing domains, can pose significant computa-
tional challenges when using conventional volume-discre-
tization based numerical methods like the finite element 
method (FEM). The high computational cost associ-
ated with FEM renders it impractical for such paramet-
ric analyses. In contrast, the boundary element method 
(BEM) offers a lower-dimensional problem by discretiz-
ing only the domain’s boundary. BEM is especially suit-
able for problems with unbounded domains, such as those 
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encountered in metamaterial design. However, the fully 
populated system matrix in conventional BEM can still 
lead to computational challenges. Although accelerated 
techniques like fast multipole BEM [3–5], adaptive cross 
approximation BEM [6], and pre-corrected fast Fourier 
transform BEM [7] have reduced the computational cost 
to O(NlogN) , where N is the system size, conducting large-
scale wave analysis across different problem settings using 
BEM remains resource-intensive. This is particularly true 
for large-scale problems with high wave frequencies due 
to the poor condition of their system matrices. Finding a 
good pre-conditioner to reduce the number of iterations is 
still an on-going effort [8].

Various surrogate/reduced order modeling techniques 
have been developed to reduce the computational cost of 
parametric wave analysis. These techniques range from con-
ventional projection-based reduced order modelling to more 
recent machine learning-based surrogate models. In [9, 10], 
project-based model order reduction (MOR) methods were 
developed for conventional BEM systems, aiming to reduce 
the computational cost of multi-frequency acoustic wave 
analysis. A key step in this approach is to construct a series 
of frequency-independent matrices by expanding frequency-
dependent BEM kernels, which is non-trivial especially 
for problems with complex boundary conditions [11]. To 
overcome this challenge, a matrix-free MOR method was 
proposed [11]. This method operates on the transfer func-
tions between system inputs and outputs, circumventing 
complications arising from complex boundary conditions 
and enabling integration with existing acceleration tech-
niques. Nevertheless, these conventional projection-based 
reduced order modelling methods were primarily developed 
for problems with fixed domains, extending them to solve 
design problems involving continuously changing domains 
is challenging.

Recently, there has been a growing utilization of machine 
learning models based on artificial neural networks in wave 
analysis and metamaterial design. Examples include, but 
are not limited to, the use of Gaussian radial basis function 
networks for predicting wave band amplitude [12], convolu-
tional neural networks (CNN) for forecasting acoustic wave 
absorption spectra across different absorber structures [13], 
as well as predicting spatial loudness distribution for vari-
ous scatterers [14]. Furthermore, multi-scale convolutional 
neural networks have been employed to predict the propaga-
tion of acoustic waves [15]. Generative adversarial networks 
(GAN) have also found application in designing meta-porous 
materials for sound absorption [16], as well as metamaterials 
with specific transmission characteristics [17] and reduced 
total scattering cross-section [18]. However, these end-to-
end models are problem-specific, and their applicability has 
predominantly been limited to relatively simple 2D problems 
due to the requirement for extensive training data. Moreover, 

their performance is highly dependent on the mesh resolu-
tion, necessitating retraining for different resolutions.

In an effort to minimize the reliance on training data and 
achieve mesh independence, several physics-informed neural 
network models have been developed to solve partial dif-
ferential equations (PDE) [19–21]. These network models 
map the location of a point inside the domain to its solution 
for a given problem. The training of the network is guided 
by the underlying PDE or the associated energy formulation 
and boundary conditions. As such, no or very little train-
ing data are needed. Recently, these methods have been 
extended to solve boundary integral equations [22]. How-
ever, these models tend to be much more difficult to train 
and require lengthier training processes than for purely data-
driven approaches. Additionally, they are designed to solve 
one specific problem with fixed parameters. For a new set 
of parameters, e.g., a different structure or different bound-
ary conditions, a new ANN model must be constructed and 
re-trained.

Recently a new type of artificial neural network modes enti-
tled as Neural Operators have emerged as powerful network 
models that map between two infinite-dimensional function 
spaces. Unlike physics informed ANNs, neural operators 
are solution operators, i.e., they can output solutions corre-
sponding to different parametric settings without re-training. 
Additionally, these operators are resolution invariant. A model 
trained using a coarse mesh can be directly used to obtain 
solutions on fine meshes. Various neural operators have been 
proposed [23–28]. Among them, the Fourier neural operator 
(FNO) has emerged as a promising approach to approximate 
complex operators arising in PDEs because of its state-of-
the-art approximation capabilities [26]. This method has 
been applied successfully to solve various PDEs. It has been 
employed to compute the solutions of the Navier-Stokes equa-
tion with different initial conditions in the turbulent regime, 
outperforming several well-known representative ANN mod-
els [26]. For wave analysis, a recent work applied the method 
to perform elastic wave analysis in a finite 3D heterogenous 
medium characterised by different shear velocities [28]. To 
reduce the computational burden which increases with the 
number of dimensions, factorized F-FNO [29] method was 
employed to reduce the number of convolutional kernel 
weights. Although the number of weights is reduced, the com-
putational cost of F-FNO is not necessarily less than that of 
the original FNO as shown in [29]. This is because the Fourier 
transfer and its inverse transfer contribute a significant portion 
of the computational cost. Even with the fast Fourier transfer 
technique, the computational complexity is still O(NlogN) , 
where N is the total number of grid points inside the domain, 
which grows linearly with the dimension. Another study lev-
eraging the FNO was conducted to comprehend frequency 
domain 2D finite seismic wavefields in the context of varying 
velocity models for seismic imaging [30]. Their proposal of 
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a parallel FNO (PFNO) framework for different frequencies, 
demonstrated high accuracy even in the presence of data noise 
[30]. Combining FNO with DeepOnet has also been proposed 
and applied to perform full waveform inversion in a 2D rec-
tangular domain [31]. All applications demonstrated so far are 
for solving PDEs in finite domains. It is not straightforward to 
effectively extend the method to solving exterior problems due 
to the challenge posed by the infinite domain. In addition, the 
efficiency of the FNO should be further improved for dealing 
with 3D problems.

In this work, we propose a data-driven surrogate model-
ling approach entitled as B-FNO based on the BEM and the 
FNO, targeting at wave analysis of problems with changing 
domains and frequencies. We first cast wave equations into 
their integral formulations. We then construct Fourier neural 
operators to map the boundaries of problem domains and 
other parameters to the boundary solutions. Once all the 
boundary quantities are obtained, the wave quantities at any 
points inside the domain, whether it is finite or infinite, can 
be calculated via an integral formulation. The advantages of 
the proposed method are that (1) it reduces the dimension 
of the problem by one and thus reduces the size of the prob-
lem and the computational complexity of the Fourier neural 
operator, (2) it can deal with exterior problems without the 
need to discretize the infinite domain or artificially truncate 
the domain, and (3) it is more efficient and accurate than 
some well-known representative ANN models.

This paper is organized as follows. In Sect. 2, the BIE 
formulation for the acoustic wave equation and the basic 
framework of the FNO are introduced. The detailed B-FNO 
method is then described. In Sect. 3, numerical experiments 
on a series 2D and 3D benchmark problems are described 
and results are presented. Ablation study and comparison 
with BEM and other neural network models are presented 
and discussed. The conclusion and future work are described 
in Sect. 4.

2   Methods

2.1   Boundary integral formulation of acoustic 
wave equation

The type of problem we focus in this work is acoustic wave 
analysis; however, the method proposed is also applicable 
to elastic and electromagnetic wave analyses. The linear 
acoustic equation in the frequency domain is governed by 
the Helmholtz equation:

where � is the complex acoustic pressure at location � , k is 
the wavenumber, and Q�

(
�, �Q

)
 represents a point sound 

source at point �Q inside domain D , with amplitude of Q.

(1)∇ 2� + k2� + Q�
(
�, �Q

)
= 0, ∀ x ∈ D

There are three types of boundary conditions typically 
prescribed on the boundary S of domain D : (1) sound pres-
sure is given by � =

−
� ; (2) particle velocity is given by 

q ≡ � �

� n
= q = i� � vn; and (3) the impedance is given by 

� = Zvn . where the overbar symbol indicates a given value, 
� is the density of acoustic medium, vn is the normal veloc-
ity of the acoustic medium, and Z is the specific acoustic 
impedance. For exterior problem, besides abiding the bound-
ary conditions, the field at infinity should comply with the 
subsequent Sommerfeld radiation condition:

where R denotes the radius of an encompassing sphere 
around the structure and � designates the radiated wave in 
a radiation issue or the scattered wave during a scattering 
predicament.

Applying the Green’s second identity and the property 
of Dirac function, Eq. (1) can be formulated into a bound-
ary integral equation, termed as the conventional boundary 
integral equation (CBIE):

where � I(x) represents the incident wave, which is absent 
in radiation problems, r is the distance between a source 
point x to a field point y, and the H(1)

1
(kr) denotes the Hankel 

function of the first kind. Kernel G, also recognized as the 
‘fundamental solution’ or ‘Green’s Function’, outlines the 
response at a certain field point due to a solitary source at a 
source point. Kernel F is its normal derivative. The CBIE 
essentially performs a convolution of kernels G and F along 
the boundary. c(x) is a coefficient with its value depends on 
the location of x:

With the given boundary conditions, Eq.  (2) with 
c(x) = 1∕2 is first solved for unknown boundary quantities. 
The pressure inside the domain is then found by computing 
the integral in Eq. (2) with c(x) = 1 and the known bound-
ary values.

One critical issue of CBIE for exterior acoustic problems 
is the non-uniqueness at fictitious frequencies, which are 
related to the eigenfrequencies of the corresponding interior 

lim
R→∞

[

R
|
|
|
|

� �

� R
− ik�

|
|
|
|

]

= 0

(2)c(x)� (x) = ∫
S

[
G(x, y,� )q(y) − F(x, y,� )� (y)

]
dS(y) + � I (x) + QG

(
x, xQ ,�

)

G(x, y,� ) =

{
i

4
H

(1)

0
(kr) , for two dimensions

1

4� r
eikr , for three dimensions

F(x, y,� ) =

{
−

ik

4
H

(1)

1
(kr)r,jnj(y) , for two dimensions

1

4� r2
(ikr − 1)r,jnj(y)e

ikr , for three dimensions

c(x) =

{
1,∀ x ∈ D;

1

2
,∀ x ∈ S (smooth);
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acoustic problems. A dual formulation consisting of the 
CBIE and its normal derivative was proposed by Burton and 
Miller to resolve this issue [32]. Taking the derivate of the 
CBIE with respected to the normal direction at the source 
point x , hypersingular BIE (HBIE) is obtained. Then, the 
Burton-Miller (B-M) formulation can be written symboli-
cally as:

where � is a coupling coefficient. In this paper, � = −ih is 
used, with h being the typical element size in the BEM mesh.

Equation  (2) is solved by discretizing the boundary 
of the domain D. The resulting discretized linear sys-
tem can be typically solved by the generalized mini-
mum residual method (GMERS) [33] in which the solu-
tion is found in the Krylov space formed by a span of {
x0, x1 = �x0, x2 = �x1, ⋯ , xn = �xn−1, ⋯

}
 where x0 is 

the discretized initial guess of the solution and xn is the 
solution at the n-th iteration. � is the system matrix with 
its components being the integrals of kernels evaluated at 
each element.

2.2   Basic framework of the original FNO

The original FNO is a neural operator that maps a param-
eter space to the corresponding solution space in a finite 
domain. The key idea of the FNO is to add a non-local 
integral operation to the usual network updating procedure 
in each hidden layer, as shown in Eq. (3).

where vt is the high-dimensional representation of the solu-
tion at the t-th hidden layer, W and � stand for a linear trans-
formation and non-linear activation function, a represents 
the problem parameters, � denotes the network param-
eters and 

(
K(a;� )vt

)
(x) is the non-local integral defined as 

(
K(a;� )vt

)
(x) = ∫

D
� � (x − y, a)vt(y)dy . The convolu-

tional nature of the integral allows it to be computed via 
fast Fourier Transform (FFT):

where F  denotes the Fourier transform of a function and 
F

−1 is its inverse. R� is a tensor containing the Fourier coef-
ficients of the kernel function � � , which is determined 
through learning via network updates. During the computa-
tion, high-order modes are filtered out, resulting in model 
speed-up. Additionally, this filtration aids in removing high-
frequency noises present in the feature information.

CBIE + � HBIE = 0

(3)vt+1(x) ∶= �
(
Wvt(x) +

(
K(a;� )vt

)
(x)

)
, ∀ x ∈ D

(
K(a;� )vt

)
(x) = F

−1(F(� � ) ⋅ F(vt))(x) = F
−1(R� ⋅ (Fvt))(x)

2.3   B‑FNO

The B-FNO predicts boundary solutions for a range of prob-
lems characterized by different parameters. In this study, we 
focus on wave scattering scenarios involving various struc-
tures. Therefore, the parameter space considered encom-
passes both the varying structures and incident wave fre-
quencies. We define the geometry of these structures using 
a set of boundary nodes extracted from a boundary mesh. To 
input the wave frequency, multiple approaches can be used. 
One straightforward approach is to directly input the wave 
number as an additional channel. However, the performance 
of B-FNO using this approach is less satisfactory. Through a 
thorough investigation, it has been discovered that the most 
accurate results are achieved by implicitly representing the 
frequency using the boundary pressure field corresponding 
to the incident wave. Figure 1 shows the architecture of the 
B-FNO network model. The inputs of the network are vec-
tors containing the Cartesian coordinates of boundary points 
x ∈ S and the incident plane wave pressure on this set of 
boundary points � I(x) = eik∙ x , where k is the angular wave 
vector. The output of the network is the solution for bound-
ary unknowns. In this work, we focus on problems involving 
wave scattering over hard structures. Hence the output is the 
sound pressure on the domain boundary � (x) , x ∈ S . After 
the boundary unknowns are solved, Eq. (2) is employed to 
calculate the wave field at any point inside the domain, that 
is � (x) , x ∈ D.

It is important to note that the boundary points extracted 
from a boundary mesh are typically unevenly distributed. 
To facilitate efficient FFT calculations, the inputs are trans-
formed into a high-dimensional representation, denoted as 
v0(x) ∈ ℝ

dv , which is evaluated on a uniform distributed 
grid using a fully connected neural network called FC1. 
The dimension of this representation is dv . As depicted in 
Fig. 1, for 2D problems, the high-dimensional representa-
tion consists dv 1-D vectors, each with a size of N, where N 
is the total number of boundary points. For 3D problems, 
the high-dimensional representation consists dv 2-D arrays, 
with each array having a size of N1 × N2 = N , where N is 
the total number of boundary points.

The updating process of the high-dimensional represen-
tation, vt(x), at each Fourier layer FL follows the similar 
approach to the original FNO as described in Eq. (3). How-
ever, there is a distinction in that the non-local integral, 
∫

S
� � (x − y, a)vt(y)dy , is defined on the boundary instead 

of the entire domain. This integral bears resemblance to 
the boundary integrals present in the integral formulation 
shown in Eq. (2). The key distinction is that in Eq. (2), the 
kernel functions are based on the fundamental solutions of 
the Helmholtz’s equation, whereas in B-FNO, the kernel 
function is treated as network parameters and is determined 
through minimizing the loss function of the network. There 
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is a certain advantage of using this data-driven approach 
to determine the kernel function instead of using the fun-
damental solutions directly as the kernel function. Firstly, 
no regularization is required to handle singular and/or 
hyper-singular integrals. The data-driven approach learns 
the “regularized” kernels directly. Secondly, the system 
exhibits better behaviour. As shown in Sect. 5, the number 
of Fourier layers required to achieve accurate solutions is 
typically much less than the number of iterations needed 
in GMRES, particularly for problems with ill-conditioned 
system matrices. Moreover, it appears to be frequency inde-
pendent regardless of the condition of the system.

The updating process can be described in detail as fol-
lows. First, the FFT is employed to compute the Fourier 
coefficients of vt(x) . Subsequently, the high-order modes are 
filtered out, and the remaining coefficients are multiplied 
with the kernel coefficient tensor R. Inverse FFT is then per-
formed on the product to obtain the updated vt(x) , denoted 
as vt+1(x) . Finally, after the final Fourier layer, the high-
dimensional representation is projected through another 
fully connected neural network, FC2, to obtain the boundary 
solution � (x) , for x ∈ S.

3   Numerical experiments

A series of two-dimensional and three-dimensional scat-
tering problems are used to examine the effectiveness of 
the proposed B-FNO approach. In most of these problems, 
a unit-amplitude plane wave with frequency � is incident 
upon a collection of rigid scatterers. Additionally, a problem 
with a point sound source of unit amplitude is studied to 
assess the performance of the method with different sound 

sources. Hard-wall boundary condition is imposed in all the 
problems.

In all the examples studied in this work, the ground truth 
data is generated using the conventional BEM. Constant 
element discretization is employed in all the problems. For 
three-dimensional problems, triangular constant elements 
are used.

3.1   2D scattering problem–elliptical scatterer

A hard-wall ellipse is subjected to a plane incident wave 
with a unit amplitude propagating along the positive x-direc-
tion. The geometry and associated parameters are illustrated 
in Fig. 2, where “a” represents the semi-major axis of the 
ellipse, and “b” represents the semi-minor axis. In this 
physical scenario, we explore two types of problems: the 
frequency sweeping problem with a fixed structure, and the 
emulation of various structures at a fixed frequency. We first 
assess the prediction accuracy of B-FNO for both of these 

Fig. 1  Schematic of B-FNO architecture

Fig. 2  Schematic of an ellipse subject to a plane wave with unit 
amplitude
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problem types. Subsequently, we conduct an ablation study 
to analyse the influence of different hyperparameters on the 
model’s performance. The hyperparameters under consid-
eration include input forms, the dimension of the represen-
tation dv , the number of Fourier layers, and the number of 
Fourier modes.

3.1.1   Prediction accuracy

The prediction accuracy is assessed by two types of error 
measures: the Root Mean Squared Error (RMSE) and the 
relative Root Mean Squared Error (rRMSE), which are 
defined as follows:

where Ptruth denotes the ground truth of pressure on the 
boundary calculated by the conventional BEM, Pprediction is 
the boundary pressure predicted by the B-FNO and N is the 
total number of boundary points in each sample. The rRMSE 
allows for a more intuitive comprehension of the error in the 
form of a percentage, while the RMSE gives a better reflec-
tion of accuracy when the denominator is relatively small. 
All errors are presented in the following format:

where errormean and errorstd represent the average value and 
the standard deviation of all testing samples respectively.

In the frequency sweeping problem, the values of a and 
b are held constant. The orientation angle of the ellipse is 
set to 0, and the frequency ranges considered are presented 
in Table 1. In the structural change problem, the frequency 
remains fixed, while the ranges for a and b are also specified 

RMSE =

√
1

N

∑ N

i=1
(Ptruth, i − Pprediction, i)

2

rRMSE =

√√√
√ 1

N

∑ N

i=1

(Ptruth, i − Pprediction, i)
2

Ptruth, i
2

RMSE or rRMSE = errormean ± errorstd

in Table 1. The orientation of the ellipse is uniformly dis-
tributed within the range of 0 to π. All the results reported 
in Table 1 are obtained using a 4-layer FNO with dv = 16 
and full modes. The training samples are uniformly selected 
from the entire parameter range, while the testing samples 
are randomly chosen from the complete set of samples 
excluding those used for training. The Adam optimizer is 
employed with a learning rate of 8 × 10

−4 , and the H1 norm 
loss is utilized as the loss function, f, which is defined as 
the difference between the prediction and the ground-truth.

Based on the errors presented in Table 1, it is evident 
that B-FNO demonstrates outstanding performance in both 
problem types. In the frequency sweeping problem, B-FNO 
demonstrates its capability to handle wide frequency ranges. 
Although there is a slight increase in error as the frequency 
range expands, such as from [1, 1000 Hz] to [1, 2000 Hz], 
this trend is expected because the same training data and 
network architecture are employed in all cases. As the range 
broadens, the problem complexity naturally increases, which 
in turn requires additional training data and/or a more com-
plex architecture to attain the same level of accuracy. The 
geometric variation problem follows a similar pattern. When 
enlarging the geometric size range, for instance, by changing 
the semi-major axis range from 0.6 ~ 2.7 to 2.4 ~ 10.8 and 
the semi-minor axis range from 0.4 ~ 2.3 to 1.6 ~ 9.2, there 
is a slight decrease in accuracy. However, this decrease in 
accuracy is minimal, indicating that the frequency level, as 
measured by the dimensionless wavenumber, has minimal 
impact on the overall accuracy.

To gain a better understanding about the performance of 
the method, Fig. 3 presents some additional results. Taking 
the model trained with ka range from 5 to 25 as an exam-
ple, the training loss curve is plotted in Fig. 3(a) for 1000 
epochs. It is evident that the convergence is rapid and the 
error could be further decreased if additional epochs are 

∥ f∥ H1 =
(
∥ f∥ 2

L2
+ ∥ ∇ f∥ 2

L2

)1∕2

Table 1  The performance of B-FNO in both frequency sweeping problem and structural change problem with varying dimensionless wavenum-
ber

Frequency sweeping problem Structural change problem

 Dimensionless wavenumber 0.037 ~ 37 37 ~ 73 0.037 ~ 73 5 ~ 25 30 ~ 50 20 ~ 100
Semi-major axis a (m) 1.2 0.6 ~ 2.7 3.6 ~ 5.4 2.4 ~ 10.8
Semi-minor axis b (m) 0.8 0.4 ~ 2.3 2.4 ~ 4.6 1.6 ~ 9.2
Frequency (Hz) 1 ~ 1000 1000 ~ 2000 1 ~ 2000 272.95
Number of samples Training: 500, Testing: 500 Training: 1000, Testing: 400
Number of epochs 1000 1000
RMSE 2.02E-3±

7.65E-4
2.12E-3±
5.45E-4

3.93E-3±
1.86E-3

1.58E-3±
3.79E-4

2.02E-3±
4.66E-4

6.02E-3±
5.69E-3

rRMSE 0.011%±
0.004%

0.008%±
0.002%

0.015%±
0.006%

0.009%±
0.002%

0.008%±
0.002%

0.022%±
0.021%
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used. Figure 3(b) showcases the comparison between the 
acoustic pressure on the boundary of an ellipse predicted 
by B-FNO and the ground truth, demonstrating the close 
alignment between the B-FNO prediction and the truth, as 
indicated by the precision values in Table 1. Using B-FNO, 
we also predict the BEM boundary solution of a circle with 
a radius of 1 m at a frequency of 272.95 Hz. Equation (2) 
is then used to calculate the scattered acoustic pressure for 
the entire considered field. Th analytical solution for sound 
pressure in this case is available and used to calculate the 
absolute error of the prediction:

where ∈0= 1 , ∈n= 2 for n > 0 . p0 is the pressure of the 
incident plane wave, r, � are the coordinates of point in the 
computational domain, � d is the polar angle of the incident 
wave propagation direction, which is zero in this example 
and H(1)

n
 denotes the first kind of n order Hankel function. It 

should be noted that circular scatterers are not included in 
the training data, but the surrogate model still provides good 
results, as shown in Fig. 3(c).

3.1.2   Ablation study

In this section, we study the impact of different hyperpa-
rameters on the training accuracy of B-FNO, including fre-
quency input form, dimension of vt , the number of Fourier 
layers, and Fourier modes. To facilitate a clear interpretation 
of the loss curves, which can often be oscillatory, we have 
applied a modified approach. All the loss curves presented 
in this section have been processed using a moving average 
method. Each point in the smoothed curve is generated by 
averaging the corresponding point and its next 49 consecu-
tive points in the original loss curve.

ps = −p0
∑

+∞
n=0

∈ni
n
Jn

� (ka)

H
(1)
n

�
(ka)

H(1)
n
(kr)cosn

(
� − � d

)

We employ the ellipse with a semi-major axis of 1.2 and 
a semi-minor axis of 0.8, along with a frequency range from 
1 to 1000 Hz, as our benchmark for the frequency sweeping 
problem study. On the other hand, for the structural change 
problem, we select the ellipse with a semi-major axis rang-
ing from 0.6 to 2.7 and a semi-minor axis ranging from 0.4 
to 2.3 at a frequency of 272.96 Hz as the benchmark.

In all figures presented in the subsequent sections, the 
top figures display the complete training loss curve, and a 
logarithmic scale is used to label the training loss value. The 
bottom figures provide zoomed-in views of specific areas 
of interest from the top figures. In the zoomed-in figures, a 
linear scale is employed to represent the training loss. The 
average testing relative errors (rRMSE) of different cases are 
listed in the tables next to the top figures.
3.1.2.1   Comparison of  different frequency input 
forms While the geometry of the structure can be prescribed 
relatively straightforward by using the nodes from a bound-
ary mesh, incorporating the wave frequency into the network 
poses a more challenging task. A simplistic approach is to 
input the wavenumber as an additional input channel. Hence, 
in the frequency sweeping problem, a total of three input 
channels (coordinates x, coordinates y, wavenumber k) are 
utilized. However, the accuracy of this approach is unsatis-
factory, as indicated by the loss curve in Fig. 4(a). Through 
extensive experimentation, we have found that using the 
incident wave pressure at the boundary to implicitly repre-
sent the frequency yields the best accuracy. In this approach, 
four input channels are used: coordinates x, coordinates y, 
real part of plane wave pressure, and imaginary part of plane 
wave pressure. The training loss achieved with these four 
channels is significantly lower than that attained with the 
three channels as depicted in Fig. 4(a).

For the structural change problems, where the fre-
quency is fixed, it may seem unnecessary to include the 
frequency as an input. Two input channels corresponding 
to the x and y coordinates of the boundary nodes should 

Fig. 3  a The loss curve for structural change problem with ka from 5 to 25; b The comparison between the boundary pressure calculated by 
BEM & B-FNO; c Absolute error of the wave field outside a circular scatterer calculated by B-FNO
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theoretically be sufficient. However, it has been discovered 
that by including the frequency input in the same format 
as the four channels, the training loss further decreases, 
resulting in significantly lower training loss, as illustrated 
in Fig. 4(b).

Interestingly, for both cases, employing four input chan-
nels, which incorporate the plane wave sound pressure 
acting on the boundary, yields higher accuracy. While the 
plane wave pressure can be seen as indicative of the wave 
frequency, this input format captures the oscillatory physi-
cal nature of the sound wave at different frequencies. Con-
sequently, it facilitates faster and more effective learning 
for the network model. This input form has also proven 

beneficial in achieving good accuracy in the subsequent 
example involving a point sound source.
3.1.2.2  Effect of the dimension of v

t
  In B-FNO, the input 

first passes through a lift layer P, which elevates the origi-
nal input to a higher dimensional representation v through 
a shallow fully connected neural network. Theoretically, 
lifting to a higher-dimensional space can encapsulate more 
information and consequently yield superior precision in 
subsequent learning. However, a trade-off evidently exists 
between accuracy and time cost. As Fig. 5 illustrates, once 
the number of latent channels, dv , reaches 64, increas-
ing the dimensionality results in a smaller loss reduc-
tion than before and notably requires significantly more 

Fig. 4  Training loss curves corresponding to cases with different input forms in a frequency sweeping problem and b structural change problem. 
The bottom figures are the zoomed-in views of the shaded areas in the top figures

Fig. 5  Training loss curve corresponding to cases with different numbers of latent channels in a frequency sweeping problem and b structural 
change problem. The bottom figures are the zoomed-in views of the shaded areas in the top figures
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computational time. Therefore, in this work, we typically 
opt for 64 latent channels.
3.1.2.3  Effect of  fourier layers Regarding the number 
of Fourier layers in B-FNO, the results shown in Fig. 6 
indicate that utilizing 4 layers yields significantly higher 
accuracy than deploying 2 layers, while the application 
of 8 layers does not lead to a substantial enhancement. 
Considering the trade-off between accuracy and efficiency 
and given that the use of 8 layers demands twice the com-
putational time compared to 4 layers, 4 layers seem to be 
a good choice and are used in all examples considered in 
this work.

3.1.2.4   Effect of  fourier modes In these specific types of 
problems, the sample dataset comprises 180 boundary 
grids, corresponding to 180 modes that constitute the full 
mode set. Notably, it has been observed that even utilizing 
only a tenth of the modes can lead to satisfactory accuracy 
in these cases. However, it is evident that the highest accu-
racy is attained when employing the full mode set, as shown 
in Fig. 7. During the implementation of B-FNO, the repre-
sentation vt is initially transformed using the Fast Fourier 
Transform (FFT), followed by discarding the high modes. 
Subsequently, an inverse transformation is performed. 
While this approach does save some computational time, the 
time saved is not significant. Furthermore, when conducting 

Fig. 6  Training loss curves corresponding to cases with different numbers of Fourier layers in a frequency sweeping problem and b structural 
change problem. The bottom figures are the zoomed-in views of the shaded areas in the top figures

Fig. 7  Training loss curves corresponding to cases with different numbers of Fourier modes in a frequency sweeping problem and b structural 
change problem. The bottom figures are the zoomed-in views of the shaded areas in the top figures
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training for more complex models in subsequent examples, 
the accuracy advantage of utilizing the full modes becomes 
more apparent. Hence, we choose to sacrifice a little time in 
exchange for higher precision in the remaining examples. 

3.2   2D scattering problem–Helmholtz resonator 
(HR)

A Helmholtz resonator is a widely utilized structure in the 
field of sound engineering. It comprises two main compo-
nents: a cavity and a neck. The cavity is connected to the 
outside through the neck, much like a bottle with its neck 
as the opening. When external forces, such as airflow, dis-
turb the air in the neck of the resonator, it oscillates and 
causes the air within the cavity to resonate. At the point 
of resonance, the sound intensity surrounding the resonator 
experiences a notable reduction. Therefore, one common 
application of HRs is in sound energy absorption.

The key design variables of a HR are its cavity and neck 
dimensions, as the resonant frequency of a HR is predomi-
nantly influenced by these factors. Thus, in this particular 
example, we will conduct simulations of wave scattering 
over HRs with varying dimensions of the neck and cavity, 
covering a range of frequencies. Unlike the previous exam-
ple, where only the frequency or structure varies, in this 
case, we will assess the performance of the B-FNO on prob-
lems with varied structure and frequency.

The geometry and relevant parameters of the HR are 
depicted in Fig. 8, with “w1” and “h1” representing the 
width and height of the neck, while “w2” and “h2” denote 
the width and height of the cavity, respectively. In this exam-
ple, we fix “w2” and “h2” and only vary “w1” and “h1” to 
reduce the training time. The ranges for the two geometrical 
parameters are listed in Table 2. The frequency range con-
sidered is [500 Hz, 1500 Hz], and the corresponding dimen-
sionless wavenumber range is [5, 20]. Similar to the previous 
example, the B-FNO maps the positions of boundary nodes 
and the frequency in the form of incident plane wave pres-
sure to the corresponding boundary solution.

A total of 25,600 h are generated and wave analysis is 
performed on each of them using the conventional BEM. 
Among the 25,600 boundary solutions, 10,000 of them 
are used for training and the 5000 of the rest is randomly 
selected for testing. The training samples are drawn uni-
formly within the entire ranges of geometric parameters. 
For frequency sampling, a non-uniform sampling strategy 
is employed. Due to the resonance characteristics of HRs, 

sound pressure varies more rapidly on the boundary near 
resonance and exhibits different characteristics than off-
resonance pressures. To capture the complex relationship, 
more frequency samples should be drawn near the resonant 
frequencies. By examining the pressure peak of each HR 
within the frequency range, resonant frequencies of each HR 
are estimated. Then, 8 sampling points are densely arranged 
around each resonant frequency, followed by a uniform dis-
tribution of sampling points within the remaining frequency 
range.

The mean and standard deviations of the RMSE and 
rRMSE for 5000 testing samples are provided in Table 2. 
The combination of 10,000 training data and the non-
uniform sampling strategy has resulted in excellent over-
all accuracy. However, it is worth noting that the standard 
deviation of RMSE is relatively high, likely due to the pres-
ence of larger errors in resonant HRs. Figure 9 illustrates the 
pressure solutions obtained using B-FNO and conventional 
BEM for two representative HR cases. The results shown 
in Fig. 9(b) and (c) correspond to a resonant HR, while the 
result in Fig. 9(a) pertains to a non-resonant HR. Upon com-
paring these results, it is evident that the prediction accu-
racy is higher for non-resonant HRs compared to resonant 
HRs. However, when examining the solutions obtained with 
and without utilizing the non-uniform sampling strategy, as 
depicted in Fig. 9(b) and (c), a significant improvement is 
observed in Fig. 9(b), highlighting the effectiveness of this 
sampling strategy. It is anticipated that incorporating more 
training data near resonance will further enhance the accu-
racy of the predictions.

3.3   3D scattering problem–multiple Helmholtz 
resonators

In this section, we delve into a more intricate setup involv-
ing multiple Helmholtz resonators. Our configurations 
encompass four resonators of the same size arranged lin-
early as shown in Fig. 10(b) and four resonators of varying 

Table 2  The parameter ranges 
of 2D HRs and the prediction 
accuracy of B-FNO in 2D HR 
scattering problems

w1 (cm) w2 (cm) h1 (cm) h2 (cm) Sampling strategy RMSE rRMSE

10 ~ 25 40 15 ~ 30 40 Non-uniform 3.53E-3 ± 3.31E-3 0.01%±0.06%
Uniform 3.27E-2 ± 1.9E-1 0.12%±0.62%

Fig. 8  Schematic of Helmholtz 
resonator
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dimensions set up in a 2 × 2 matrix as shown in Fig. 10(c). 
The linear arrangement of four identical resonators seeks 
to achieve a cumulative interference effect, enhancing or 
negating resonance at specific frequencies. It’s crucial in 
designing systems that require modulation of frequencies, 
such as noise cancellation technology or signal amplifica-
tion. The 2 × 2 matrix, consisting of resonators with varying 
dimensions, adds another layer of complexity to the tests. 
The matrix introduces a myriad of combinations, resulting 
in varying frequency responses and vibrational modes. Such 
a configuration finds its importance in offering advanced 
control over broadband frequencies.

The utilization of such complex geometries emphasizes 
the versatility and computational capabilities of B-FNO, 
showcasing its prowess in tackling convoluted scenarios 
effectively. The parameters for defining a single HR are 
shown in Fig. 10(a), where “w1”, “d1”, and “h1” represent 
the length, width and height of the cavity, and “w2”, “d2”, 
and “h2” denote the length, width and height of the neck, 
respectively.

3.3.1   HR matrix

The 2 by 2 arranged HRs of varying sizes are impinged on 
by an incident plane wave with a direction along the nega-
tive z axis, with a frequency of 500 Hz. The dimensions and 
varying window sizes of each HR are listed in Table 3. The 
entire structure is a rectangular structure with an external 
size of 1.5 m in length, 1.2 m in width, and 0.6 m in height. 
The structure’s surface is discretized into 4,880 triangular 
constant elements. The coordinates of the centroids of these 
triangular elements, along with the incident plane wave pres-
sure at each point, serve as inputs for the B-FNO method. 
These inputs are reshaped into five 2D arrays of size 61 × 80. 
Although only four HRs are considered in this example, the 
variations in length and width across the four HR windows 
lead to a rapid expansion in the number of required training 
data. If we were to uniformly sample only 5 points within the 
range of dimensions for “w2” and “d2,” the dataset would 
already comprise nearly 400,000 samples. This clearly high-
lights the geometric complexity of the structure.

Fig. 9  Comparison between the boundary pressure calculated by BEM (ground-truth) & B-FNO: a a non-resonant HR, b HR near the resonant 
frequency, B-FNO using a non-uniform sampling training set, c HR near the resonant frequency, B-FNO using a uniform sampling training set

Fig. 10  a Schematic of 3D Helmholtz resonator and it’s relative parameter. b  linearly arranged identical resonators. c  resonators of varying 
dimensions set up in a 2 × 2 matrix
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In the context of so many parameters changing at the 
same time, it has been found that 20,736 training samples 
are adequate to achieve a high accuracy, as shown in Table 3. 
From the testing dataset, a representative structure is ran-
domly selected. The discretized structure, along with the 
boundary pressure computed using the B-FNO method, is 
illustrated in Fig. 11(a) and (b). For comparison purposes, 
the ground-truth calculated from the BEM is also depicted 
in Fig. 11(c). It is evident that the boundary sound pressures 
calculated by both methods exhibit excellent agreement. The 
average relative Root Mean Square Error (rRMSE) across 
10,000 testing samples is 0.05%.

3.3.2   Linearly arranged HR structure

In this example, we examine a 3D scattering problem involv-
ing a point sound source. The structure consists of four iden-
tical HRs arranged linearly. A point source with a frequency 
of 400 Hz and a unit amplitude is incident upon this HR 
structure. The coordinates of the point source are (0.95, 
2.8, 2). The dimensions of each HR, including the ranges 
of the width and length of the neck, are provided in Table 3. 
The external dimensions of the structure, as illustrated in 
Fig. 10(b), are 5.6 m x 1.9 m x 1.45 m. The surface of the 
structure is discretized into 16,416 triangular elements. The 

coordinates of the centroids and the plane wave pressure at 
each centroid serve as inputs for the B-FNO network. These 
inputs are reshaped into five 2D arrays of size 144 × 114.

Due to the uniformity in the dimensions of the four HRs, 
this example involves fewer variables, resulting in a signifi-
cant reduction in the size of the training set. With only 3,000 
training samples, B-FNO achieves the precision indicated 
in Table 3. In Fig. 12, we present the discretized structure 
for one testing sample, along with the boundary pressures 
calculated using B-FNO and the BEM. These values are 
shown on the reshaped spatial array. Once again, there is 
excellent agreement between the predictions and the ground-
truth values. The average relative RMSE (rRMSE) across 
1000 testing samples in this case is 0.01%.

An important aspect of this example is the utilization of a 
unit point source as the incident sound source. Consequently, 
the frequency input incorporates the pressure exerted by the 
point source on the surface of the structure, resulting in a 
high level of accuracy. Interestingly, even when using the 
plane wave pressure as the frequency input, a considerable 
degree of accuracy is maintained. Table 3 demonstrates that 
the accuracy achieved with the plane wave pressure input is 
slightly lower than that obtained with the point source. Nev-
ertheless, when faced with more complex sound source sce-
narios, we believe that directly inputting the pressure exerted 

Table 3  The parameter ranges of 3D HR structures and the prediction accuracies of B-FNO in the corresponding scattering problems

Problems B-FNO input w2
(cm)

d2
(cm)

h2
(cm)

w1
(cm)

d1
(cm)

h1
(cm)

RMSE rRMSE

2 × 2 varied HRs Coordinates & plane wave pressure 25~
45

15~
30

20 60 45 32.5 5.29E-2±
3.26E-3

0.05%±
0.03%

4 × 1 identical HRs Coordinates & plane wave pressure 50~
130

30~
80

50 150 100 75 1.75E-3±
1.14E-2

0.01%±
0.04%

Coordinates & point source pressure 1.16E-3±
6.39E-3

0.009%±
0.03%

Fig. 11  a A discretized structure of 2 by 2 arranged HRs. The mean 
testing rRMSE is 0.05%. The length and the width of each neck in 
the four HRs are No.1 (0.4 m, 0.3 m), No. 2 (0.35 m, 0.15 m), No. 3 
(0.35 m, 0.25 m) and No. 4 (0.3 m, 0.2 m) respectively. b The abso-

lute pressure on the 2D reshaped spatial array calculated by B-FNO. 
c The absolute pressure on the 2D reshaped spatial array calculated 
by BEM
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by the sound source on the structure’s surface would better 
ensure the accuracy of B-FNO.

4   Comparison of B‑FNO with other network 
structures

In this section, we compare the performance of B-FNO 
against a variety of other well-known network structures. 
The first of these networks is CNN, which operates as a 
straightforward, forward-propagating, 4-layer convolutional 
neural network. This design can be distinguished for its sim-
plicity and fluency in handling the feedforward mechanism. 
Next, we consider the ResNet structure [34]. This configura-
tion comprises 4 residual blocks, with each block made up of 
two convolutional layers and a residual connection. The key 
feature of ResNet lies in the introduction of residual blocks, 
enabling the network to learn from the residuals or error 
terms, which tends to improve overall accuracy over time. 
Lastly, we examine the U-Net structure [35]. This is a unique 
network architecture that has been extensively employed in 
solving physical problems. It performs 5 layers of down-
sampling via convolution, followed by sequential up-sam-
pling. Notable for its “U” shaped structure, U-net excels at 
various tasks by capturing both high and low-level details 
through hierarchical feature learning. The 1D U-Net used an 
initial convolutional kernel size of 256, and 2D U-Net used 
an initial convolutional kernel size of 256 × 256.

To ensure a fair comparison, all four cases employ the 
same training and testing datasets, batch size, and optimi-
zation algorithm. Figure 13 plots the training loss curves 
for various networks in the context of elliptical scattering 
problems, 2D HR scattering problems, and 3D scattering 
problems with 2 by 2 arranged HRs. The figure also dis-
plays the average testing errors for all networks. The results 
demonstrate that, given the same number of training data 

and epochs, B-FNO consistently outperforms the other three 
networks across all cases. B-FNO exhibits the highest con-
vergence rate and accuracy, followed by U-Net. Plain CNN 
performs the least effectively. In particular, the performance 
of CNN and ResNet significantly deteriorates in more com-
plex problems involving Helmholtz resonators. In contrast, 
the performance of B-FNO remains nearly unchanged in HR 
problems, highlighting its ability to capture wave physics, 
likely due to the non-local integral operation incorporated 
in its Fourier layers.

The training time of neural network models is influenced 
by multitude factors, which makes a comparative analy-
sis challenging when controlling variables. As shown in 
Table 4, the training times per epoch of CNN and ResNet 
models employed in this work are considerably faster 
than that of the U-Net and the B-FNO models. The U-Net 
model equipped with a large initial convolutional kernel 
size, exhibits comparable run time to that of B-FNO. The 
interference time of the 2D U-Net model is approximately 
2.9 milliseconds, while the B-FNO has an inference time 
of around 4.2 milliseconds, as indicated in Fig. 13(d). It is 
important to note that B-FNO requires significantly fewer 
training data to achieve the same level of accuracy. This 
reduction in the amount of necessary training data leads to 
considerable time savings in data generation, which is often 
a costly and resource-intensive process.

The amount of memory required to establish each net-
work model is listed in Table 4 as the Model memory. It is 
directly related to the number of parameters in the network. 
Table 4 also shows the memory consumption of the entire 
model training process, which includes the memory required 
to build the trainer. In the B-FNO, the number of parameters 
associated with the kernel R� is determined by the number 
of Fourier layers, the hidden channel dimension H, the prob-
lem dimension ND and the number of Fourier modes Nmodes , 

Fig. 12  a The discretized structure of linearly arranged identical HRs. 
The mean testing rRMSE is 0.01%. The length and the width of each 
neck are 1.11 m and s 0.65 m respectively. b The absolute pressure on 

the 2D reshaped spatial array calculated by B-FNO. c The absolute 
pressure on the 2D reshaped spatial array calculated by BEM
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Fig. 13  a Loss curve of the structural change problem of ellipse scattering b Loss curve of the frequency sweeping problem of ellipse scattering 
c Loss curve of 2D HR scattering with varied frequency and geometry d Loss curve of the 2 by 2 arranged 3D HRs scattering

Table 4  The number of parameters, GPU memory usage to build network, and the training time per epoch of different network structures for the 
structural change problem of ellipse scattering and the 2 by 2 arranged 3D HRs scattering problem

Ellipse scattering 3D HRs scattering

Network Number of 
param-
eters

Model memory/ 
bytes

Training 
memory/ 
bytes

Time per 
epoch/ 
sec.

Number of param-
eters

Model memory/ 
bytes

Training memory/ 
bytes

Time per 
epoch/ 
sec.

CNN 375 18,432 50,688 0.08 6,051 40,448 138,752 2.25
ResNet 113,026 471,552 1,844,736 0.13 337,090 1,368,064 5,430,784 5.90
U-Net 2,110,722 9,056,256 34,447,872 0.23 10,012,162 40,461,312 161,526,272 7.65
B-FNO 1,553,122 6,215,680 26,610,688 0.21 32,149,314 134,974,464 531,443,712 7.09



Engineering with Computers 

which can be expressed as O
(
TH2Nmodes

ND

)
 . As a result, 

B-FNO demands substantial GPU memory, particularly for 
2D problems. Further work should be carried out to reduce 
the memory consumption.

5   Comparison of B‑FNO with other BEMs

In this section, the performance of B-FNO is compared 
with the Fast Multipole accelerated Boundary Element 
Method (FMM-BEM). Our focus is on the efficiency 
comparison. However, both the conventional BEM and 
the FMM-BEM are coded using Fortran and executed on 
a computer with CPUs. Meanwhile, the B-FNO is con-
structed on the PyTorch platform and implemented on 
GPUs. Given these distinct operational contexts, it is 
unfeasible to make a direct comparison of computational 
times. Consequently, our comparison takes the form of 
analyzing the number of iterations.

The first example used for efficiency comparison among 
the two methods is the 2D HR scattering problem, as out-
lined in Sect. 3.2. Extra efforts have been put to ensure 
that the accuracies of the two methods are comparable for 
a fair efficiency comparison. As shown in Fig. 14(a), the 
HR, with a neck width of 25 cm and a height of 30 cm, 
is subjected to a plane wave incident at 1106 Hz. This 
specific case is evaluated using the conventional BEM, 
FMM-BEM, and B-FNO. The convergence criteria for 
the iterative solver in FMM-BEM is set at 1 × 10

−3 to 
obtain the same maximum error as that in B-FNO. The 
absolute pressure field surrounding the HR calculated by 
the conventional BEM serves as the ground-truth and is 
plotted in Fig. 14(a). Based on the ground-truth, abso-
lute errors of the pressure fields computed by B-FNO 
and FMM-BEM are calculated and plotted in Fig. 14(b) 
and (c) respectively. The maximum error of both meth-
ods is 0.005. Despite sharing the same time complexity 

O(NlogN) , FMM-BEM demands 15 iterations using the 
GMRES solver to reach the same level of precision at 
the frequency of 1106 Hz. In the meantime, B-FNO only 
requires 4 FFT processes.

Furthermore, it’s noteworthy that with the increase in 
ka, the number of required generations sees a correspond-
ing increase. However, B-FNO consistently mandates the 
operation of merely 4 layers of FFT process.

Next, the ellipse frequency sweeping problem discussed 
in Sect. 3.1, featuring a dimensionless wavenumber range 
from 37 to 73, is also tested using FMM-BEM. However, 
due to the frequency limitation of traditional FMM-BEM, 
we employ a newer FMM-BEM variant capable of handling 
high frequency scenarios, known as fast directional BEM 
[36]. Under a frequency of 1500hz, the scattering sound 
pressure of a plane wave scattered by an ellipse, with a 
half major-axis of 1.2 m and a half minor-axis of 0.8 m, is 
depicted in Fig. 15(a). This pressure field is calculated by 
the conventional BEM and serves as the ground-truth. To 
achieve the accuracy depicted in Fig. 15(c), fast directional 
BEM requires 25 iterations, as shown in Fig. 15(b). On the 
other hand, B-FNO still needs only 4 FFT processes and its 
accuracy is slightly higher than that of FMM-BEM.

Based on the previous two examples, we have observed 
that the number of iterations in FMM-BEM increases as the 
non-dimensional wavenumber grows, which is expected due 
to the ill-conditioned nature of its system matrix. To further 
investigate the relationship between the number of iterations 
and the wavenumber, we employ 3D fast directional BEM to 
calculate the scattering wave fields of the two 3D HR scat-
terers mentioned in Sect. 3.3. The results, along with those 
corresponding to 2D problems, are depicted in Fig. 16. Once 
again, we observe an increasing trend with the rising wave-
number. It is worth noting that the condition of the BEM sys-
tem matrix also depends on the complexity of the structure. 
Therefore, not only does the iteration count increase with the 
wavenumber growth, but the ill-conditioned matrix resulting 

Fig. 14  a  The absolute pressure scattered by the 2D HR with 
the width and height of the neck of 25  cm and 30  cm respectively 
at 1106  Hz. b  The absolute error of scattered pressure between the 

results calculated by B-FNO & BEM. c  The absolute error of scat-
tered pressure between the results calculated by FMM-BEM & BEM
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from complex structures can significantly amplify the num-
ber of iterations, as seen in the case of the 3D structure with 
linearly arranged HRs.

For comparison, we provide the number of FFT processes 
required in B-FNO in Fig. 16. In all cases, B-FNO utilizes 
only 4 layers of Fourier layers, resulting in 4 FFT processes, 
which demonstrates its distinct and significant iterative sta-
bility. Therefore, despite the O(NlogN) time complexity of 
these methods, B-FNO holds its efficiency superiority due 
to its small and stable overhead.

6   Conclusions

In this paper, we introduce the B-FNO as a novel approach 
to addressing parametric acoustic wave analysis. By map-
ping the boundary of the problem and other physical 

parameters to the boundary solution space, the B-FNO has 
proven effective through various numerical experiments. 
These include tests on acoustic wave scattering from rigid 
ellipses and Helmholtz resonators, with cases spanning 
both two and three dimensions, as well as plane wave and 
point source incidences.

The results illustrate that B-FNO can be applied to a 
variety of structures and frequencies calculations. Further 
comparison with traditional BEM solvers, FMM-BEM 
solvers, and other neural network-based surrogate models 
highlight B-FNO’s superior accuracy and efficiency.

The findings are in accord with recent studies indi-
cating that FNO has an obvious advantage in predicting 
complex physical situations based on PDEs. While previ-
ous research has focused on modelling in a finite space, 
B-FNO contributes new insight into solving PDEs in an 
infinite space. Additionally, B-FNO reduces the problem 
dimension by one, thus enhancing the efficiency of the 
FNO.

One of our future works is to further improve the training 
and interference efficiency of B-FNO, as well as to reduce 
the memory usage. The time complexity caused by FFT in 
B-FNO is O(NlogN) , where N is the total number of bound-
ary points. In light of this, we believe that there is significant 
room for efficiency and memory consumption improvements 
in three-dimensional problems through incorporating model-
order-reduction techniques.

To date, our experiments have primarily revolved around 
scattering problems. Nonetheless, with a firm belief in 
its adaptability, we believe that B-FNO could be equally 
impactful in resolving radiation problems. Furthermore, 
the method should not be limited to acoustic wave analysis 
alone. It can be easily adapted to conduct elastic wave and 
electromagnetic wave analyses as well.

In conclusion, the B-FNO is a promising approach for 
parametric wave analysis, especially in infinite space that 
involve multiple structural simulations and frequency 

Fig. 15  a The absolute pressure scattered by the ellipse with the half 
major-axis of 1.2  m and the half minor-axis of 0.8  m at 1500  Hz. 
b The absolute error of scattered pressure between the results calcu-

lated by B-FNO & BEM. c The absolute error of scattered pressure 
between the results calculated by FMM-BEM & BEM

Fig. 16  The number of iterations varying with the dimensionless 
wavenumber for different numerical experiments
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sweeping problems. Further research is needed to explore 
the full potential of the B-FNO and to address any limita-
tions that may arise.
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