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A B S T R A C T

In this paper, a series of novel sphere elements are proposed in the boundary element method (BEM). These
elements are designed as isoparametric closure elements to simulate spherical geometries with greater accuracy
and fewer nodes than conventional boundary elements. Constructed similarly to multi-dimensional Lagrange
elements, these sphere elements utilize trigonometric bases for each dimension. To avoid zero Jacobians at polar
nodes, poleless sphere elements combined with triangular elements are employed to approximate spheres. The
evaluation methods of boundary integrals over these elements, including singular and nearly singular integrals,
are derived using degenerated element techniques and adaptive subdivision techniques, respectively. Three
numerical examples are employed to underscore the advantages of the proposed elements, showing that with
only 50 nodes per sphere, results align closely with those obtained using 290 nodes per sphere with conventional
boundary elements, effectively reducing degrees of freedom without sacrificing accuracy.

1. Introduction

Spherical voids and inclusions are commonly observed in materials
like porous and particle-embedded materials. Whatever purpose these
sphere geometries are designed for, the displacement and stress distri-
bution in the vicinity will be altered and these voids and inclusions will
result in stress concentration. Generally, to obtain the distribution of
stresses and displacements over complex geometries, numerical
methods are the mainstream options, such as the finite element method
[1–3] (FEM) and boundary element method [4–6] (BEM). If considering
the structures with a lot of spherical voids or inclusions, BEM may have
advantages in mesh generation because it does not need to discretize
inner space of the computational domain. Furthermore, boundary in-
tegral equations (BIEs) contain no derivate term of displacement,
resulting in more accurate results. Nevertheless, numerous elements and
nodes are still necessary in approximating spherical geometries and
interpolating the stresses and displacements over the surfaces, which
may lead to high computational costs when the number of spheres
increases.

To address spherical geometry discretization efficiently, various re-
searchers have developed specialized boundary elements and associated
techniques. Feng et al. designed three types of quadratic interpolation

elements for acoustic BEM, stating that their discretization techniques
directly represent the actual spherical surface geometry without
geometrical error [7]. However, accurately capturing sound pressure
gradients with this approach still required a high number of elements
and nodes. Gao et al. introduced a series of isoparametric closure ele-
ments based on Lagrange interpolation for elasticity BEM, including
sphere elements [8–10]. These sphere elements effectively model com-
plete spherical geometries, reducing the number of degrees of freedom
(DOFs) needed for spherical voids and inclusions. Nevertheless, their
accuracy in stress evaluation, particularly at the end nodes and polar
nodes, remains limited. To improve smoothness at the end nodes, Ma
et al. developed smooth sphere elements by reusing real nodes as
auxiliary nodes along latitude and longitude directions [11,12]. While
the issue of polar nodes persists, their approach indeed enhances both
smoothness and accuracy at end nodes, although further improvements
may still be possible.

Beyond Lagrange interpolation, other researchers have explored
hole-like elements based on trigonometric functions. Banerjee and
Henry et al. proposed a 3-node element utilizing trigonometric-based
shape functions for thermal, mechanical, and thermoelastic analyses
of composites with voids and fiber inclusions [13–16]. By accounting for
geometric characteristics, their approach simplified boundary integral
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equations (BIEs) and reduced computational costs. Buroni et al. con-
structed 4-, 5-, and 6-node trigonometric hole elements to model cy-
lindrical voids in computational domains [17,18]. However, their
methods did not address near-singular integral evaluations over these
elements, limiting their application in cases with closely spaced voids.
Zhang et al. developed a tube element based on a 3-node hole element
and integrated it with the boundary face method to address problems in
heat conduction, mechanics, and acoustics [19–21]. Zheng et al. con-
structed higher-order Lagrange and trigonometric hole elements with
variable node counts, ultimately concluding that trigonometric inter-
polation is more effective for hole elements after a detailed comparison
of 31 element types [22].

In summary, previous sphere elements [8–11] have shown limita-
tions in accurately modeling spherical geometries, particularly at end
nodes and polar nodes. Additionally, prior studies indicated that trigo-
nometric interpolation is better suited than Lagrange interpolation for
circular geometries. In response, this paper introduces new elements
designed to model spherical geometries in mechanics problems, drawing
from Gao’s construction methods [9] and employing trigonometric
interpolation along latitude and longitude directions. This approach
effectively improves the smoothness at end nodes. To address the issue
of a zero Jacobian at polar nodes, poleless sphere elements are combined
with several triangular elements to discretize spherical geometries. The

degenerated element method is applied to evaluate weakly singular in-
tegrals over the proposed elements, while an adaptive element subdi-
vision method handles near-singularities. Finally, three numerical
examples are provided to demonstrate the accuracy and efficiency of the
proposed elements.

The rest of the paper is organized as follows. Section 2 provides an
overview of the basic BEM formulations for mechanics problems. Sec-
tion 3 reviews the construction methods of the Lagrange sphere ele-
ments proposed by Gao and Ma and primarily introduces the novel
sphere elements. Section 4 details the methods for evaluating singular
and nearly singular integrals over the proposed sphere elements. Section
5 presents three numerical examples and their results. Finally, Section 6
offers concluding remarks.

2. Briefly introduction of the BEM

For three-dimensional elasticity problems within a domain Ω and its
boundary Γ, the boundary integral equation (BIE) for the displacement
field can be expressed as follows [4–6]:

cijuj(P) =
∫

Γ
u∗ij(P,Q)tj(Q)dΓ(Q) − CPV.

∫

Γ
t∗ij(P,Q)uj(Q)dΓ(Q), (1)

where the notation CPV.
∫
signifies that the integral is to be interpreted

in the Cauchy principal value sense. Here, P andQ denote the source and
field points, respectively, while uj and tj represent displacement and
surface traction, respectively. The coefficient cij depends on the local
geometry at P, equaling 0.5 for a smooth boundary and 1 when P is
within the computational domain. The terms u∗ij and t∗ij are Kelvin’s
fundamental solutions, mainly determined by the distance between the
source point and the field point (represented by r), and can be written as:

u∗ij =
1

16π(1 − ν)μr

[

(3 − 4ν)δij +
∂r
∂xi

∂r
∂xj

]

, (2)

t∗ij = −
1

8π(1 − ν)r2

{
∂r
∂n

[

(1 − 2ν)δij+3
∂r
∂xi

∂r
∂xj

]

+(1 − 2ν)
(

ni
∂r
∂xj

− nj
∂r
∂xi

)}

.

(3)

in which μ is the shear modulus, ν the Poisson ratio, and xi denotes the
coordinate in the i th orientation. The vector r extends from the source
point to the field point, n is the outward normal at field point Q, and ni
are the components of vector n. Here, δij is the Kronecker delta. Sub-
scripts i and j follow the Einstein summation convention (the same
hereinafter).

The BIE for stress can be expressed as follows:

σij(P) =
∫

Γ
Uijk∗(P,Q)tk(Q)dΓ(Q) −

∫

Γ
T∗
ijk(P,Q)uk(Q)dΓ(Q), (4)

where U∗
ijk and T

∗
ijk can be calculated by following two formulas:

U∗
ijk =

1
8π(1 − ν)r2

[

(1 − 2ν)
(

δik
∂r
∂xj

+ δjk
∂r
∂xi

− δij
∂r
∂xk

)

+ 3
∂r
∂xi

∂r
∂xj

∂r
∂xk

]

,

(5)

Usually, Boundary Г requires discretization into elements to evaluate
boundary integrals in Eqs.(1) and (4). Within these elements, the dis-
placements, surface tractions and geometries are interpolated in the
same way, i.e.

ui(ξ, η) = Nα(ξ, η)uα
i , (7)

ti(ξ, η) = Nα(ξ, η)tαi , (8)

xi(ξ, η) = Nα(ξ, η)xα
i , (9)

in which Nα are the shape functions; α denotes the α-th node, and the
repeated subscript α also follows Einstein summation convention.
Intrinsic coordinates ξ and η range from − 1 to 1. In a more rigorous
sense, Eq. (8) for surface traction interpolation is optimal for flat ele-
ments, but is adapted in this paper for sphere elements due to extensive
validation and minimal resulting error. For curved boundary elements,
more rigorous formulations can be found in Refs. [23–25]. In this paper,
all elements are isoparametric elements, including the new proposed
sphere elements.

After discretizing the boundaries of the computational domain, let ne
represent the number of elements, Eqs.(1) and (4) can then be expressed
in a discretized form:

cui(P) =
∑ne

e=1

{

tαj
∫ 1

− 1

∫ 1

− 1
u∗ij(P, ξe, ηe)Nα(ξe, ηe)J(ξe, ηe)dξedηe

}

−
∑ne

e=1

{

uα
j

∫ 1

− 1

∫ 1

− 1
t∗ij(P, ξe, ηe)Nα(ξe, ηe)J(ξe, ηe)dξedηe

} , (10)

T∗
ijk =

μ
4π(1 − ν)r3

{

3
∂r
∂n

[

(1 − 2ν)δij
∂r
∂xk

+ ν
(

δik
∂r
∂xj

+ δjk
∂r
∂xi

)

− 5
∂r
∂xi

∂r
∂xj

∂r
∂xk

]

+3ν
(

ni
∂r
∂xj

∂r
∂xk

+ nj
∂r
∂xi

∂r
∂xk

)

+ (1 − 2ν)
(

3nk
∂r
∂xi

∂r
∂xj

+ njδik + niδjk
)

− (1 − 4ν)nkδij
} . (6)
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σij(P) =
∑ne

e=1

{

tαk
∫ 1

− 1

∫ 1

− 1
U∗
ijk(P, ξe, ηe)Nα(ξe, ηe)J(ξe, ηe)dξedηe

}

−
∑ne

e=1

{

uα
k

∫ 1

− 1

∫ 1

− 1
T∗
ijk(P, ξe, ηe)Nα(ξe, ηe)J(ξe, ηe)dξedηe

} , (11)

in which J represents the Jacobian. The standard BEM analysis process
involves first assembling equations based on Eq. (10). Typically, for
three-dimensional problems, each boundary node generates three
equations. This results in an algebraic system:

[H]{u} = [G]{t}, (12)

in which {u} and {t} represent the vectors containing the displacements
and surface tractions at all boundary nodes, respectively. [H] and [G]
are the coefficient matrices. Solving this linear algebraic system pro-
vides the displacements and surface tractions on the boundaries. These
results can then be substituted into Eqs. (10) and (11) to obtain the
displacements and stresses at any point within the computational
domain. It should be noted that in this study, the stresses of the
boundary nodes are evaluated using the traction recovery method [6],
rather than using the stress BIE.

Most integrals in this process are evaluated using Gauss quadrature.
However, when the source point P lies on or near the element e, the
integrals in Eqs.(10) and (11) must be specially treated because they
possess singularity or near-singularity, respectively. In this study, the
rigid body motion method [6] is applied to avoid strongly singular in-
tegrals associated with the diagonal elements in the matrix [H]. As for
weak-singular and near-singular integrals over the new proposed sphere
elements, some special treatments must be applied, which are shown in
Section 4 in detail.

3. Construction of isoparametric sphere elements

This section details the construction methods for isoparametric
sphere elements. First, the construction of isoparametric hole elements,
foundational to sphere elements, is briefly introduced. Next, semi-hole
elements are developed. Sphere elements are then constructed by
multiplying the hole and semi-hole elements along two orthogonal ori-
entations. Finally, to address the zero Jacobian issues at polar nodes,
poleless sphere elements are proposed.

3.1. Isoparametric hole elements

The shape functions of conventional Lagrange elements rely on a
series of polynomials based on terms 1, ξ, ξ2, ξ3, and so on. Generally,
circular boundaries are segmented into several Lagrange elements to
approximate circular geometries with multiple low-order polynomial
interpolations, though this requires a lot of nodes and elements to ach-
ieve high accuracy. To reduce the number of nodes, based on the
characteristics of the circle, trigonometric functions, such as 1, cos θ, sin
θ, cos2θ and so on, are introduced to replace the polynomial bases. Thus,
a new coordinate system θ is established, with the relationship between
ξ and θ defined as follows:

θ = π(1+ ξ)ξ ∈ [− 1,1]θ ∈ [0,2π]. (13)

In trigonometric hole elements, nodes are evenly distributed around
the circumference. For example, in a 3-node trigonometric hole element,
the nodes are positioned at θ = 0, 2π/3, and 4π/3, as shown in Fig. 1. The
coefficients for bases such as 1, cos θ, sin θ, cos2θ within the shape
functions are determined by solving equations based on the Kronecker
delta property of the shape functions, with the detailed process provided
in Ref. [22].

In cases where a 3-node element does not meet accuracy re-
quirements, higher-order bases are used to construct hole elements with
more nodes. However, due to the linear dependence of trigonometric
functions, selecting higher-order bases is not as straightforward as that
with polynomial bases. Fig. 2 illustrates a Pascal triangle composed of
trigonometric functions, where only terms on the right side of the dotted
line are chosen as bases. Terms on the left are excluded due to their
linear dependence on those on the right. Shape functions for trigono-
metric hole elements with additional nodes are provided in Ref. [22].

3.2. Semi-hole elements

Extending the construction approach of hole elements to more
generalized cases, elements representing semicircles can be developed
similarly. For instance, a 5-node semi-hole element features five equally
spaced nodes, as shown in Fig. 3. The relationship between coordinate
systems ψ and η is written as follows:

ψ =
π
2

ηη ∈ [− 1,1]ψ ∈
[
−

π
2
,
π
2

]
. (14)

Based on the previously introduced Pascal triangle, five trigono-
metric bases are selected as 1, cos ψ , sin ψ , cos2ψ, cos ψ⋅sin ψ . After
determining the coefficients using the Kronecker delta property, the
resulting shape functions can be written as follows:

Fig. 1. 3-node trigonometric hole element [22].

Fig. 2. Pascal triangle for selecting the bases.

Fig. 3. 5-node semi-hole element.
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N1(ψ) = 0.5
(
− 1+

̅̅̅
2

√
cosψ

)
(− 1+ cosψ + sinψ)

N2(ψ) = − cosψ
(
− 1 −

̅̅̅
2

√
+
(
1+

̅̅̅
2

√ )
cosψ + sinψ

)

N3(ψ) =
(
1+

̅̅̅
2

√ )
cosψ

(
− 1+

̅̅̅
2

√
cosψ

)

N4(ψ) = cosψ
(
1+

̅̅̅
2

√
−
(
1+

̅̅̅
2

√ )
cosψ + sinψ

)

N5(ψ) = 0.5
(
− 1+

̅̅̅
2

√
cosψ

)
(− 1+ cosψ − sinψ)

. (15)

Similarly, semi-hole elements with an arbitrary number of nodes
(exceeds 3) can be constructed in this way. Appendix A includes figures
and shape functions for 3-node and 9-node semi-hole elements,
providing additional examples.

3.3. Constructions of sphere elements

Sphere elements, characterized by two dimensions—longitude and
latitude—are applied within three-dimensional BEM contexts. Latitude
is represented by coordinate ξ and longitude by coordinate η, with θ and
ψ coordinates following the relationships defined by Eqs. (13) and (14).
Sphere elements are constructed by positioning hole and semi-hole el-
ements at two orthogonal orientations and multiplying the shape func-
tions of their corresponding nodes. The shape functions of two polar
nodes are equal to those of two end nodes on the semi-hole elements. As
an example, a 26-node sphere element is formed by combining an 8-
node hole element with a 5-node semi-hole element, as shown in
Fig. 4. The shape functions for all nodes are expressed as follows:

Nα(ξ, η) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cα(ξ)L2(η)1 ≤ α ≤ 8
Cα− 8(ξ)L3(η)9 ≤ α ≤ 16
Cα− 16(ξ)L4(η)17 ≤ α ≤ 24

L1(η)α = 25
L5(η)α = 26

, (16)

in which Ca represents the shape functions of the a-th node in the hole
element, and Lb represents those of the b-th node in the semi-hole
element. Generally, the positive directions of axis ξ and η shown in
Fig. 4 indicate the outward normal of the sphere element pointing away
from the sphere center, according to the right-hand rule. If the outward
normal points toward the sphere center, either the ξ-axis or η-axis should

be reversed.
In addition to the 26-node sphere element, 6-node, 14-node, 62-

node, and 114-node sphere elements can be constructed in the same
manner, as shown in Fig. 5. For these sphere elements, if all nodes are
situated on a spherical surface, any point corresponding to a combina-
tion of ξ and η coordinates will also be located on that surface. However,
the Jacobian values at the two polar nodes are zero, potentially causing
significant errors near the poles. Overall, these sphere elements provide
highly accurate geometric representations of entire spheres, except in
the regions near the poles.

3.4. Poleless sphere elements

Poleless sphere elements are introduced to address issues at the poles
in traditional sphere elements. This method avoids discretizing the re-
gions near the poles by using triangular elements for these areas,
enabling the construction of an entire spherical surface without the
complications introduced by polar nodes.

The construction of poleless sphere elements begins with 2D arc el-
ements. Fig. 6 shows a 5-node arc element, which is created by indenting
two ends of a 5-node semi-hole element by a small angle θ (set to π/20 in
this paper). The coordinate ψ is slightly modified for this element and
can be expressed as follows:

ψ =
9π
20

η η ∈ [ − 1, 1] ψ ∈

[

−
9π
20

,
9π
20

]

. (17)

The shape functions are derived in the same manner as those for
semi-hole elements:

Poleless sphere elements are constructed by combining hole ele-
ments with arc elements, where the shape functions are obtained by
multiplying those of the corresponding nodes. The method for deter-
mining the outward normal follows that of the standard sphere ele-
ments, with the distinction that poleless sphere elements lack polar
nodes. As illustrated in Fig. 7, a 40-node poleless sphere element, con-
structed from an 8-node hole element and a 5-node arc element, has an
outward normal directed away from the spherical center. his design
eliminates the zero Jacobian issues at the poles but introduces two new
concerns. First, triangular elements may introduce slight geometric er-
rors because an arbitrary point within the element may not exactly lie on
the spherical surface. Nevertheless, if the angle θ is not too large (such as
π/20 in this paper), the error remains negligible. The second concern is a

Fig. 4. Construction of a 26-node sphere element.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N1(ψ) = 0.7462+ cosψ( − 1.7276+ 0.9814cosψ + 0.8382sinψ) − 0.6374sinψ
N2(ψ) = − 0.5405+ cosψ(3.9958 − 3.4552cosψ − 1.2747sinψ) + 0.1994sinψ
N3(ψ) = 0.5886+ cosψ(− 4.5363+ 4.9477cosψ)
N4(ψ) = − 0.5405+ cosψ(3.9958 − 3.4552cosψ + 1.2747sinψ) − 0.1994sinψ
N5(ψ) = 0.7462+ cosψ( − 1.7276+ 0.9814cosψ − 0.8382sinψ) + 0.6374sinψ

. (18)
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modest increase in node count due to the poleless configuration. How-
ever, when targeting comparable accuracy, the total node count
required to model a sphere remains lower than that with multiple con-
ventional 8-node quadratic boundary elements. Both of them are veri-
fied in the following examples.

In this paper, three element-matching configurations will be
employed to discretize the sphere: a 12-node (4 × 3) poleless sphere
element matched with 8 linear triangular elements (14 nodes in total for
the sphere), a 40-node (8 × 5) poleless sphere element matched with 8
quadratic triangular elements (50 nodes for the sphere), and an 84-node

(12×7) poleless sphere element matched with 12 quadratic triangular
elements (98 nodes for the sphere). These three configurations are
shown in Fig. 8.

4. Evaluation of singular integrals over the sphere element

This section focuses on the treatment of weakly singular and near-
singular integrals over the proposed sphere elements.

4.1. Weak-singular integral

According to the Eq. (10), the weak-singular integrals can be written
as follows:

Iw =

∫ 1

− 1

∫ 1

− 1

Gw(ξ, η)Nα(ξ, η)J(ξ, η)
r(ξ, η) dξdη, (19)

in which Gw represents the regular multiplier in the fundamental solu-
tion, i.e.

Gw =
1

16π(1 − ν)μ

[

(3 − 4ν)δij +
∂r(ξ, η)

∂xi
∂r(ξ, η)

∂xj

]

. (20)

In this paper, degenerate element method [6] is employed to deal
with the weak-singular integrals. Unlike its use for conventional

Fig. 5. 6-node, 14-node, 26-node, 62-node and 114-node sphere elements.

Fig. 6. A 5-node arc element.

Fig. 7. Construction of a 40-node poleless sphere element.
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boundary elements, an additional procedure is required for the proposed
sphere elements.

First, both sphere and poleless sphere elements are mapped onto a
square, as shown in Figs. 9 and 10. This mapping involves “cutting” the
spherical surface along its longitude line ξ = ξP+ 1 or ξ = ξP – 1, which is

opposite to the source point, then unfolding it, and stretching it into a
square. During this process, it can be found that the sphere element
degenerates at two poles because the poles are mapped to the edges of
square in the parameter space. The resulting square is then subdivided
into four triangles by connecting the source point to four vertices of the

Fig. 8. Three matching configurations of the poleless sphere and triangular elements.

Fig. 9. Mapping a sphere element to a square.

Fig. 10. Mapping a poleless sphere element to a square.

Fig. 11. Mapping the upper triangle to a square.

Y.-T. Zheng et al. Engineering Analysis with Boundary Elements 171 (2025) 106057 

6 



square. Each triangle can subsequently be mapped to a square, where
the source point corresponds to two nodes to eliminate the singularity
[6], as shown in Fig. 11 (showing the mapping of the upper triangle). To
describe it in a formula, the weak-singular integral becomes:
∫ 1

− 1

∫ 1

− 1

GwNαJ
r

dξdη =
∑4

i=1

∫

Ti

GwNαJ
r

dξdη =
∑4

i=1

∫ 1

− 1

∫ 1

− 1

GwNαJ⋅JTi
r

dξʹdηʹ,

(21)

in which JTi is the Jacobian mapping from the triangle to the rectangle.
The Jacobian approaches zero near the source point P, thereby elimi-
nating the weak singularity by exploiting the properties of the degen-
erate element. This approach can also be viewed as effectively
distributing more Gauss integration points around the source point.

4.3. Near-singular integrals

When the source point is near, but not on, the element, the singular
terms r− 1, r− 2 or r− 3 in integrands will change drastically, which may
lead to inaccurate evaluations of Gauss-Legendre quadrature, resulting
in a near-singularity issue. To address this, in this paper, the subdivision
method is used in this study to evaluate near-singular integrals. Before
introducing the subdivision method [26], two points require
clarification.

First, what is ‘close’ should be defined. In this paper, near-singularity
is assessed following the criterion in Ref. [6], which can be written as:

rmin ≤
L
4

(e
2

)− p/(2m)
, (22)

in which rmin represents the distance from the source point to the
element; L represents the element’s actual length; e is the preset
maximum integral error; m is the maximum allowable number of Gauss
points; p is determined by the singularity order λ of the integrand, which
can be expressed as follows:

p =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3

λ +
2
5

√

. (23)

Second, the method for calculating rmin, the minimum distance from
an arbitrarily positioned source point P to the sphere element, differs
from conventional boundary elements. It is a bit different from the
conventional boundary elements. Typically, a Newton iteration method
is used to find the minimum distance point, starting from an arbitrary
point on the element with intrinsic coordinates (ξ, η). The iterative
increment vector {Δξ, Δη}T is determined by solving the following
system:

⎡

⎢
⎢
⎢
⎢
⎣

∂xi
∂ξ

⋅
∂xi
∂ξ

+ ri⋅
∂2xi
∂ξ2

∂xi
∂ξ

⋅
∂xi
∂η + ri⋅

∂2xi
∂ξ∂η

∂xi
∂ξ

⋅
∂xi
∂η + ri⋅

∂2xi
∂ξ∂η

∂xi
∂η ⋅

∂xi
∂η + ri⋅

∂2xi
∂η2

⎤

⎥
⎥
⎥
⎥
⎦

{
Δξ
Δη

}

= −

⎧
⎪⎪⎨

⎪⎪⎩

ri⋅
∂xi
∂ξ

ri⋅
∂xi
∂η

⎫
⎪⎪⎬

⎪⎪⎭

, (24)

in which the repeated subscripts i imply summations, ranging from 1 to
3; ri represents the distance of i th direction from the source point to the
trial point. Generally, the iteration times won’t exceed 6 when the
minimum distance point is found. However, for sphere elements, two
stationary points, one a minimum distance and the other a maximum,
exist. If the iteration converges to the intrinsic coordinates (ξm, ηm), the
distance from the source point to the opposite coordinates (ξm ± 1, ηm ±

1) should also be compared, with the smaller distance selected as the
minimum.

The essence of the element subdivision method is to divide the
element into several sub-elements, thereby reducing the element length
L and satisfying the condition in Eq. (22). This subdivision prevents the
integrand from changing too abruptly over the integration range,
transforming Eq. (22) to obtain the length of each sub-element:

L = 4r
(e
2

)p/(2m)
, (25)

where r represents the minimum distance from the source point to the
sub-element. This distance changes as subdivision proceeds, meaning
that sub-element lengths are adaptive and vary according to the dis-
tance, hence the term “adaptive element subdivision method”. For both
sphere and poleless sphere elements, subdivisions are carried out along
the latitude ξ and longitude η directions, as follows:

1) Calculate the actual lengths Lξ and Lη of the sphere element along ξ
and η directions, respectively. Determine the minimum distance rmin
and intrinsic coordinate (ξA, ηA) of the nearest point A on the
element.

2) Based on Lξ, Lη and rmin, verify if the conditions for both directions in
Eq. (22) are met. If neither condition holds, subdivision is unnec-
essary for this source point. If one or both conditions are met, begin
the subdivision process.

3) Let rmin be r, calculate L using Eq. (25), and locate the first subdivi-
sion point along the ξ+ direction. (That means the first subdivision
point is located at a distance L from point A along ξ+ direction.)

4) Calculate the distance between the source point P and the latest
subdivision point, denoted by rn. With rn be r, determine L by Eq. (25)
for the n-th sub-element along ξ+ direction and locate the next sub-
division point. (The next subdivision point is located at a distance L
from the latest subdivision point along ξ+ direction.) If the intrinsic
coordinate of this point exceeds ξA + 1, set it to ξA + 1 and halt the
subdivision along ξ+ direction.

5) Similarly, repeat steps 3 and 4 along ξ− , η+ and η− directions.

Fig. 12. Adaptive element subdivision for a sphere element.
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6) Using the subdivision points in these four directions, divide the
sphere element into several sub-elements, as shown in Fig. 12(c)
(Just one possible subdivision result).

In Fig. 12, subdivision points are numbered 1–9, excluding the
closest point A and the farthest point B. Note that some sub-elements are
merged if they are sufficiently far from the source point to satisfy Eq.
(22). For poleless sphere elements, the subdivision is similar and thus
not shown in detail.

5. Numerical examples

To show the performance of sphere and poleless sphere elements and
to verify the correctness of the integration techniques, three numerical
examples are given in this section, which place emphasis on the physical
variables over the spheres.

5.1. Cube with single spherical void

The first example considers a cube containing a single spherical void,
focusing on the stress results across the spherical surface and comparing
the accuracy of various discretization methods with the exact solution.
The size of the cube is 100×100×100. The radius of the spherical void is
1, positioned at the center of the cube, as shown in Fig. 13. For conve-
nience, the origin of coordinate system is established at center of the
void, with three axes aligned parallel to the edges of the cube. The stress
distributions throughout the entire cube are as follows:

σr(r) = q
(

1 −
R3

r3

)

σt(r) = q
(

1+
R3

2r3

)

τrt(r) = 0

, (26)

in which q implies the tractions at infinity, and is set to 1; R is the radius
of the spherical void; r is the distance from a point within the compu-
tational domain to the center of the sphere. These formulas are also the
exact solution for the stress distribution in the problem of a spherical
void within an infinite domain. However, in this model, the domain is
truncated at the surface of the cube rather than extending to infinity.
Consequently, the stresses obtained from Eq. (26) are used to calculate
the surface tractions at the truncation surfaces through the coordinate
transformation of the stress tensor and the relationship between surface
tractions and stresses. The calculated surface tractions are then applied
as boundary conditions on the model’s outer surfaces.

In total, 10 kinds of boundary element models are employed in this
example. All models share the same mesh on the six outer surfaces of the
cube, while the discretization methods of the spherical voids are
different. The spherical voids are discretized as follows: 6-node, 14-
node, 26-node, 62-node and 114-node sphere elements (corresponding
to models 1–5, respectively), a 12-node poleless sphere element com-
bined with 8 linear triangular elements (model 6, 14 nodes in total), a
40-node poleless sphere element with 8 quadratic triangular elements
(model 7, 60 nodes in total), a 84-node poleless sphere element with 12
quadratic triangular elements (model 8, 98 nodes in total), 24 conven-
tional 8-node boundary elements (model 9, 74 nodes in total, as shown
in Fig. 14(a)), and 96 conventional 8-node boundary elements (model
10, 290 nodes in total, as shown in Fig. 14(b)).

After calculation, the maximum and average values of von Mises
stress errors over the spherical voids are listed in Table 1. The errors are
calculated as follows:

error =
⃒
⃒
⃒
⃒
σc − σexact

σexact

⃒
⃒
⃒
⃒× 100%, (27)

in which σc and σexact are the calculated and exact von Mises stress,
respectively. According to Eq. (26), σexact = 1.5 on the spherical void.
Meanwhile, the maximum and average values of von Mises stress errors
over spheres with radii of 1.3 are listed in Table 2, derived from the
statistics of 182 points on these spheres. As can be seen from Table 1, the
maximum error is 3.365% by using 24 conventional 8-node quadratic
boundary elements (74 nodes), while it can be reduced to 0.723% by
using 40-node poleless sphere elements combined with 8 quadratic
triangular elements (50 nodes). In Table 2, for spheres with radii of 1.3,

Fig. 13. Computational model of the example 1.

Fig. 14. Two conventional discretization methods of the spherical void.
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two maximum errors are 8.511% and 1.405%, respectively. These two
groups of maximum errors sufficiently manifest the accuracy of the
poleless sphere elements. In addition, it can also be found that the
maximum errors of all sphere elements are about 31% over the spherical
voids and 100% over the spheres with radii of 1.3. The average errors

decrease as the number of nodes in elements increases. This is due to the
fact that the maximum errors consistently occur at two polar nodes and
their vicinity due to zero Jacobians. As the interpolation order increases,
the errors of other nodes decrease, leading to a reduction in average
errors. In order to illustrate this, von Mises stress contours over the
spherical voids are drawn in Fig. 15. In Fig. 15, the yellow region in-
dicates that von Mises stress values range from 1.485 to 1.515, meaning
the error is less than 1%. It can be inferred that the sphere elements may
perform better if the zero Jacobian problem is resolved.

5.2. Cube with even-distributed spherical voids

The second example considers a 100×100×100 cube with 125 (5× 5
× 5) evenly distributed spherical voids, each with a radius of 1. The
distance between two adjacent voids is 20, as shown in Fig. 16. The
center of the cube serves as the origin of the coordinate system, with the
x, y, z axes parallel to the cube’s edges. The upper surface of the cube is
subjected to a uniformly distributed pressure of 1.5, while the bottom
surface is fixed. The main purpose of this example is to demonstrate the

Table 1
Von-Mises stress errors over spherical voids of 10 models.

Model Number of nodes on sphere Maximum errors Average errors Model Number of nodes on sphere Maximum errors Average errors

Model 1 6 31.629% 10.543% Model 6 14 5.547% 3.081%
Model 2 14 31.629% 4.518% Model 7 50 0.723% 0.305%
Model 3 26 31.629% 2.433% Model 8 98 0.575% 0.110%
Model 4 62 31.626% 1.022% Model 9 74 3.365% 2.171%
Model 5 114 31.512% 0.667% Model 10 290 0.225% 0.190%

Table 2
Von-Mises stress errors at sphere r = 1.3 of 10 models.

Model Number of nodes on sphere Maximum errors Average errors Model Number of nodes on sphere Maximum errors Average errors

Model 1 6 100.000% 1.610% Model 6 14 19.511% 0.893%
Model 2 14 100.000% 1.610% Model 7 50 1.405% 0.512%
Model 3 26 100.000% 1.610% Model 8 98 1.374% 0.511%
Model 4 62 100.000% 1.061% Model 9 74 8.511% 5.196%
Model 5 114 100.000% 1.055% Model 10 290 0.538% 0.363%

Fig. 15. Von-Mises stress contours over the spherical voids for all sphere elements.

Fig. 16. Computational model of the example 2.
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effectiveness of the poleless sphere elements in handling computational
models with multiple spherical voids. In this example, the voids are
discretized in two ways, while the cube surfaces are discretized in the
same way. In model 1, 96 quadratic elements are employed to discretize
each sphere (290 nodes for one sphere). In model 2, each sphere is
discretized using a 40-node poleless sphere element combined with 8
quadratic triangular elements (50 nodes for one sphere). The total node
counts for models 1 and 2 are 38,052 and 8052, respectively.

After the calculations, the von Mises stresses over the spherical void
located at the center of the models are shown in Fig. 17. The von Mises
stress contours for two models are shown in Fig. 18. To compare the
results of twomodels in detail, vonMises stresses along the line x= y= 2

are extracted and plotted in Fig. 19. These three figures indicate that the
stress results for the two models are nearly identical, confirming that
poleless sphere elements can effectively address cases with multiple
spherical voids. However, the DOFs of model 1 are approximately 4.7
times greater than those of model 2. The computational times of models
1 and 2 are about 901 min and 24 min, respectively, demonstrating the
efficiency of the poleless sphere elements.

5.3. Cube with randomly distributed spherical inclusions

The main purpose of the third example is to demonstrate the capa-
bility of poleless sphere elements in simulating arbitrarily distributed
spheres and dealing with multi-media models. In this example, a cube
with randomly distributed spherical inclusions is considered. The sizes

Fig. 17. Von-Mises stresses over one spherical void.

Fig. 18. Von-Mises stress contours of two models.

Fig. 19. Von-Mises stresses on the line x = y = 2.

Fig. 20. Computational model of example 3.
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and positions of the spherical inclusions are generated by computer
random numbers. The entire model is shown in Fig. 20. Line AB in the
figure does not intersect any inclusions and will be referenced for result
comparison. The boundary conditions of the cube remain consistent
with those in example 2. The shear modulus and Poisson ratio of the
inclusions are 30,000 and 0.25, respectively, while those of substrate
material are 2000 and 0.3, respectively. Due to the involvement of two
materials, the multi-domain boundary element method (MDBEM)
[27–29] is employed for calculations.

Three discretization models are used in this example. Each inclusion
of model 1 is discretized by a 12-node poleless sphere element combined
with 8 linear triangular elements (14 nodes per inclusion). In Model 2,
inclusions are discretized by 40-node poleless sphere elements with 8
quadratic triangular elements (50 nodes per inclusion). In Model 3, each
inclusion is discretized by 96 8-node elements (290 nodes per inclusion).
The discretization of six outer surfaces of the cube remains the same

across all three models. The total number of nodes for models 1, 2, and 3
are 2502, 4302 and 16,302, respectively. According to the tests that are
not shown here, model 3 is sufficiently refined to provide reliable results
for this problem, and its outcomes are considered the standard
reference.

After the calculations, the displacement and von Mises stress results
of three models are obtained. The displacement and von Mises stress
contours are shown in Fig. 21 and Fig. 22, respectively. Meanwhile, the
displacements and von Mises stresses along line AB have been extracted
and plotted in Fig. 23 and Fig. 24, respectively. It is evident that the
displacement results of three models are nearly identical, while the
stress results of model 2 and model 3 show close agreement. However,
the stress results of model 1 has significant difference from those of
model 3. This indicates that the combination of the 12-node poleless
sphere element and 8 linear triangular elements may be sufficient for
accurate displacement calculations, but not for stress evaluations. If the

Fig. 21. Z-displacement distribution over the sphere inclusions.

Fig. 22. Von-Mises stress distribution over the sphere inclusions.

Fig. 23. Displacements along line AB. Fig. 24. Von-Mises stresses along line AB.
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focus is solely on displacement results in such structures, a single
spherical inclusion requires only 14 nodes. Conversely, if the stress
distribution is of interest, a spherical inclusion may necessitate 50
nodes. The computational times of models 1, 2 and 3 are about 2.5 min,
11 min and 765 min, respectively.

6. Conclusions

In this paper, sphere elements and poleless sphere elements are
proposed. Sphere elements are constructed by the semi-hole elements
and hole elements, while poleless sphere elements are constructed by
the arc elements and hole elements. Usually, poleless sphere elements
are combined with several triangular elements to simulate the spherical
surface. To accurately evaluate all types of singular integrals over these
newly proposed elements, various techniques are employed. The rigid
body motion method is applied to evaluate strong-singular integrals.
Weak-singular integrals are addressed using the degenerate element
method, while near-singular integrals are calculated through adaptive
element subdivision methods. Finally, three examples demonstrate the
effective performance of poleless sphere elements. The discussions and
conclusions are summarized as follows:

1. When addressing weak-singular integrals using the degenerate
element method, it is essential first to map the sphere or poleless
sphere elements onto a square. This mapping process differs from
that used in conventional boundary elements.

2. For two kinds of sphere elements, element subdivision along latitude
direction should always proceed from the minimum distance point to
the opposite point, ensuring that each subsequent subdivision point
is farther from the source point than the last.

3. Due to the zero Jacobians at the two poles, sphere elements can
produce significant errors when simulating spherical geometries at

these locations. Except for the two poles, the stress errors at other
nodes decrease as the interpolation order increases, which un-
derscores the need for poleless sphere elements.

4. Combined with several triangular elements, poleless sphere elements
have good accuracy in simulating spherical geometries. In structures
with numerous spherical voids or inclusions, they can achieve ac-
curate stress results using 50 nodes per sphere and accurate
displacement results with just 14 nodes per sphere, significantly
reducing the number of degrees of freedom (DOFs) compared to
conventional 8-node boundary elements.
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Appendix A. The shape functions and diagrams of trigonometric semi-hole elements

Fig. 25. The diagrams of 3-node and 9-node trigonometric semi-hole elements.

The shape functions of 3-node trigonometric semi-hole element (as shown in Fig. 25(a)):

N1(ψ) =
1
2
−
1
2
cosψ −

1
2
sinψ

N2(ψ) = cosψ

N3(ψ) =
1
2
−
1
2
cosψ +

1
2
sinψ

The shape functions of 9-node trigonometric semi-hole element (as shown in Fig. 25(b)):

Y.-T. Zheng et al. Engineering Analysis with Boundary Elements 171 (2025) 106057 

12 



N1(ψ)= 2cos4ψ −

(

2+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4+ 2
̅̅̅
2

√
√ )

cos3ψ +

(
3
̅̅̅
2

√

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cos2ψ

−

(
1+

̅̅̅
2

√

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cosψ+2cos3ψsinψ −

(
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4+ 2
̅̅̅
2

√
√ )

cos2ψsinψ

+

( ̅̅̅
2

√

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cosψsinψ −
1
2
sinψ +

1
2

N2(ψ) = −

(

4+ 2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

16+ 8
̅̅̅
2

√
√ )

cos4ψ +

(

8+ 6
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

116+ 82
̅̅̅
2

√
√ )

cos3ψ

−

(

6+ 5
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

106+ 73
̅̅̅
2

√
√ )

cos2ψ +

(

2+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cosψ

−

(

2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

16+ 8
̅̅̅
2

√
√ )

cos3ψsinψ +

(

4+ 2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

20+ 14
̅̅̅
2

√
√ )

cos2ψsinψ

−

(

2+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cosψsinψ

N3(ψ) =
(

8+ 6
̅̅̅
2

√
+ 4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cos4ψ −

(

20+ 14
̅̅̅
2

√
+ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

194+ 137
̅̅̅
2

√
√ )

cos3ψ

+

(

15+ 10
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
(
194+ 137

̅̅̅
2

√ )√ )

cos2ψ −

(

3+ 2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

20+ 14
̅̅̅
2

√
√ )

cosψ

−

(

4+ 4
̅̅̅
2

√
+ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cos2ψsinψ +

(

4+ 2
̅̅̅
2

√
+ 4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cos3ψsinψ

+

(

1+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4+ 2
̅̅̅
2

√
√ )

cosψsinψ

N4(ψ) = −

(

16+ 10
̅̅̅
2

√
+ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

116+ 82
̅̅̅
2

√
√ )

cos4ψ +

(

32+ 22
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2020+ 1426
̅̅̅
2

√
√ )

cos3ψ

−

(

20+ 15
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

850+ 601
̅̅̅
2

√
√ )

cos2ψ +

(

4+ 3
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

34+ 23
̅̅̅
2

√
√ )

cosψ

−

(

4+ 2
̅̅̅
2

√
+ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4+ 2
̅̅̅
2

√
√ )

cos3ψsinψ +

(

4+ 2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

20+ 14
̅̅̅
2

√
√ )

cos2ψsinψ

−

(
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cosψsinψ

N5(ψ) =
(

20+ 12
̅̅̅
2

√
+ 8

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cos4ψ −

(

36+ 26
̅̅̅
2

√
+ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

676+ 478
̅̅̅
2

√
√ )

cos3ψ

+

(

22+ 17
̅̅̅
2

√
+ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

274+ 193
̅̅̅
2

√
√ )

cos2ψ −

(

5+ 3
̅̅̅
2

√
+ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cosψ

N6(ψ) = −

(

4+ 2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

16+ 8
̅̅̅
2

√
√ )

cos4ψ +

(

8+ 6
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

116+ 82
̅̅̅
2

√
√ )

cos3ψ

−

(

6+ 5
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

106+ 73
̅̅̅
2

√
√ )

cos2ψ +

(

2+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cosψ

+

(

2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

16+ 8
̅̅̅
2

√
√ )

cos3ψsinψ −

(

4+ 2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

20+ 14
̅̅̅
2

√
√ )

cos2ψsinψ

+

(

2+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cosψsinψ

N7(ψ) =
(

8+ 6
̅̅̅
2

√
+ 4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cos4ψ −

(

20+ 14
̅̅̅
2

√
+ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

194+ 137
̅̅̅
2

√
√ )

cos3ψ

+

(

15+ 10
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
(
194+ 137

̅̅̅
2

√ )√ )

cos2ψ −

(

3+ 2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

20+ 14
̅̅̅
2

√
√ )

cosψ

+

(

4+ 4
̅̅̅
2

√
+ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cos2ψsinψ −

(

4+ 2
̅̅̅
2

√
+ 4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cos3ψsinψ

−

(

1+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4+ 2
̅̅̅
2

√
√ )

cosψsinψ

N8(ψ) = −

(

4+ 2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

16+ 8
̅̅̅
2

√
√ )

cos4ψ +

(

8+ 6
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

116+ 82
̅̅̅
2

√
√ )

cos3ψ

−

(

6+ 5
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

106+ 73
̅̅̅
2

√
√ )

cos2ψ +

(

2+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cosψ

+

(

2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

16+ 8
̅̅̅
2

√
√ )

cos3ψsinψ −

(

4+ 2
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

20+ 14
̅̅̅
2

√
√ )

cos2ψsinψ

+

(

2+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cosψsinψ

Y.-T. Zheng et al. Engineering Analysis with Boundary Elements 171 (2025) 106057 

13 



N9(ψ)= 2cos4ψ −

(

2+
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4+ 2
̅̅̅
2

√
√ )

cos3ψ +

(
3
̅̅̅
2

√

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

10+ 7
̅̅̅
2

√
√ )

cos2ψ

−

(
1+

̅̅̅
2

√

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cosψ − 2cos3ψsinψ +

(
̅̅̅
2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4+ 2
̅̅̅
2

√
√ )

cos2ψsinψ

−

( ̅̅̅
2

√

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2+
̅̅̅
2

√
√ )

cosψsinψ +
1
2
sinψ +

1
2

Data availability

The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also forms part of an ongoing study.
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