
Engineering Analysis with Boundary Elements 161 (2024) 103–112

Available online 27 January 2024
0955-7997/© 2024 Elsevier Ltd. All rights reserved.

A time-domain boundary element method using a kernel-function library
for 3D acoustic problems

Zhenyu Gao , Zonglin Li , Yijun Liu *

Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China

A R T I C L E I N F O

Keywords:
Time-domain boundary element method
Kernel-function library
3D acoustic problems
Transient response
Tuning fork

A B S T R A C T

Time-domain boundary element method (TDBEM) can be applied in studying transient acoustic wave problems,
especially in solving exterior problems. However, in order to avoid calculations of coefficients at different time
steps, TDBEM usually requires storing or recomputing the coefficients at each time step. This can lead to sig
nificant amount of memory usage or long computing time. In this paper, an acoustic TDBEM based on a kernel-
function library (KFL-BEM) is proposed, in order to reduce the memory consumption of the time-domain con
ventional BEM (CBEM) and speedup the computation. In this approach, the storage requirement is reduced from
O(N2Ntmin) to O(N2), where N represents the number of degrees of freedom of the model, and Ntmin is the
minimum number of time steps for which coefficients need to be computed and stored. To demonstrate the
effectiveness of the KFL-BEM, two verification examples are presented using the problems of a pulsating sphere
and sound propagating in a channel. Compared with the CBEM, the KFL-BEM can save significantly the memory
storage as it does not require storing coefficients for any previous time steps. This method can also be applied to
solve vibro-acoustic problems in the time domain. As an example, the acoustic radiation responses of a tuning
fork under different striking loads are studied using the finite element method and the proposed KFL-BEM, which
clearly shows the potentials of the KFL-BEM in solving time-domain acoustic problems.

1. Introduction

The boundary element method (BEM) [1] is one commonly used
method for solving acoustic wave problems. Compared to the finite
element method (FEM) [2], the BEM does not require partitioning the
entire computational domain into elements. It only discretizes the sur
face of a 3D domain into boundary elements. Moreover, the radiation
boundary conditions are automatically satisfied at infinity [3] for
exterior problems. Therefore, the BEM has been widely used in solving
acoustic wave problems for several decades [4–7].

However, the coefficient matrix of the BEM is usually a dense and
asymmetric matrix, which makes the BEM expensive to use. In order to
improve the computational efficiency of the BEM, Rokhlin and Green
gard [8] in 1980’s proposed the fast multipole method (FMM), which
has been widely applied to the solution of boundary element equations
over the years [9–13]. In addition, based on the concept of H-matrices
[14], Bebendorf proposed the adaptive cross approximation (ACA)
method [15], which is easier to implement to solve the BEM equations
than using the FMM although it requires more memory usage. With the

advance of computing hardware, the fast direct solver methods have
received widespread attention recently [16–18]. Compared to algo
rithms using iterative solvers such as the FMM and ACA, fast direct
solvers do not suffer from non-convergence issues. All these fast solution
methods have been widely applied to accelerate the acoustic BEM so
lutions, mainly for frequency-domain problems.

For acoustic problems, the frequency domain analysis is a common
and major approach, allowing one to observe a series of acoustic be
haviors related to the frequency responses of structures, material
models, and so on. On the other hand, in many cases, one is also inter
ested in the behavior of sound waves due to sources of a transient nature,
such as a few impulse sources in target search of objects. In this case,
using the time-domain BEM (TDBEM) to solve acoustic problems is a
more natural and effective approach [19].

In contrast, the acceleration of TDBEM has not been extensively
studied. Ergin et al. [20] has conducted the research on acoustic prob
lems in time domain [21,22]. They proposed a plane wave time-domain
(PWTD) algorithm for accelerating the TDBEM, which is considered to
be the time-domain version of the FMM. In addition, Takahashi et al.

* Corresponding author.
E-mail address: liuyj3@sustech.edu.cn (Y. Liu).

Contents lists available at ScienceDirect

Engineering Analysis with Boundary Elements

journal homepage: www.elsevier.com/locate/enganabound

https://doi.org/10.1016/j.enganabound.2024.01.001
Received 27 October 2023; Received in revised form 2 January 2024; Accepted 2 January 2024

mailto:liuyj3@sustech.edu.cn
www.sciencedirect.com/science/journal/09557997
https://www.elsevier.com/locate/enganabound
https://doi.org/10.1016/j.enganabound.2024.01.001
https://doi.org/10.1016/j.enganabound.2024.01.001
https://doi.org/10.1016/j.enganabound.2024.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2024.01.001&domain=pdf

Engineering Analysis with Boundary Elements 161 (2024) 103–112

104

[23,24] proposed an FMM algorithm based on interpolation for
time-domain acoustic BEM and also extended the method to the field of
electromagnetism [25]. Aimi et al. applied the ACA method to the
acoustic and elastic waves exterior problems in TDBEM [26].

Regardless of the utilization of the algorithms for acceleration, the
large consumption of memory with the TDBEM is still a crucial aspect
that need to be addressed. In order to avoid computing identical co
efficients during different time steps, it is customary to store these co
efficients with the TDBEM. Therefore, the memory requirement is O
(N2Ntmin), where N and Ntmin represent the number of degrees of
freedom in the BEM model and the minimum number of time steps that
need to be computed, respectively. When Ntmin is small, the coefficient
matrix is sparse, so in many cases, the exponent of N is actually less than
2. The upper bound for Ntmin is denoted by NT, which corresponds to the
total number of time steps. To reduce the memory consumption, Thir
ard’s non-uniform grid time domain method (NGTD) [27] can reduce
the value of O(N2Ntmin)to O(NαNtmin), where α ranges from 1 to 2.
Additionally, the implementation of memory-saving algorithms pro
posed in Ref. [28] can reduce the upper bound NT to NT /2 without
introducing new errors. Current methods to reduce memory usage
mainly focus on reducing the α, however, the demand of high memory
shortages can still arise in large-scale computations when the Ntmin is
large. If it is not possible to store all values of the coefficients, a partial
storage of the coefficients and recalculation of non-stored coefficients
can be performed. Unfortunately, this recalculation can significantly
increase the computation time.

In 1998, Pan, Adams and Rizzo proposed the idea of using Green’s
function library in the BEM for modeling composite materials [29]. The
approach can help users to quickly conduct the analysis of composite
material models without much knowledge of the BEM by pre-storing the
matrix or discretized Green’s functions. Borrowing from this idea of the
Green’s function library, a method based on a kernel function library
that uses the characteristics of the TDBEM kernel functions is proposed
in this paper. The construction of the library is only dependent on the
distances between elements and normal derivatives of elements. The
library is established once and can be called directly during computation
at all time steps, instead of computing and storing the coefficients at
many time steps. The memory occupation with this library approach is
reduced from O(N2Ntmin) to O(N2), which can remedy the problem of
massive memory consumption in the TDBEM for solving large-scale
problems.

An interesting application of the TDBEM is to facilitate the direct
numerical computation of sound fields due to a vibrating structure over
time. This enables us to audibly perceive the sound generated by the
vibrating structure such as tapping a tuning fork, through structural
acoustic analysis. In order to achieve this, numerous time steps and
small-time intervals are typically required. The TDBEM using the kernel
function library is capable of effectively addressing memory limitations
in such applications as demonstrated in this paper.

The paper is organized as follows: In Section 2, we review the
boundary integral formulations of the TDBEM and the implementation
details of TDBEM based on the kernel function library (KFL-BEM). In
Section 3, we verify the accuracy and effectiveness of the algorithm
through numerical examples of two time-domain acoustic problems. In
Section 4, we present the FEM-BEM model and computed results
(including the sound playback file) of the transient vibro-acoustic
analysis of a tuning fork under different striking loads. In Section 5,
we provide some discussions and conclusions on this work.

2. TDBEM based on a kernel-function library

This section summarizes the formulations of the conventional
acoustic time-domain BEM. Since the acoustic time-domain BEM re
quires the use of results from previous time steps to compute the
boundary values at a specific time step, the computation process is time-
consuming and requires a large amount of memory consumption.

Therefore, the KFL-BEM is proposed to accelerate the computation
process and reduce the memory consumption.

2.1. Time domain boundary integral equation

In a three-dimensional (3D) domain, the acoustic wave equation can
be written as:

∇2ϕ(x, t) − 1
c2

∂ϕ2(x, t)
∂t2 + γ(ξ, t) = 0, ∀x ∈ E, (1)

in which ∇2 is the Laplacian operator, ϕ is the sound velocity potential at
point x and time t, c is sound speed, γ(ξ, t) is a possible sound source
located at ξ and at time t. The acoustic domain E, which can be either a
finite domain inside a closed surface S or an infinite domain outside the
closed surface S (Fig. 1), is considered to be isotropic and homogenous.

If there is a unit point source, that is, γ(ξ, t) = δ(ξ − y, t − τ) (here γ
represents a unit point and impulse sound source located at y at time τ),
with δ being the Dirac delta function, then the solution (sound field
located at x at time t) satisfies the above governing equation is called the
fundamental solution G(x, t; y, τ). For 3D time-domain acoustic prob
lems, G(x, t; y, τ) is given by the following expression [19]:

G(x, t; y, τ) = 1
4πr

δ
(

t − τ − r
c

)
, (2)

where r is the distance between the field point x and source point y.
To derive the boundary integral equation (BIE) corresponding to the

acoustic wave Eq. (1), we utilize the second Green’s identity in
conjunction with the above fundamental solution. As a result, we can
obtain the following BIE:

c(x)ϕ(x, t) =
∫ t

0

∫

S
[G(x, t; y, τ)q(y, τ) − F(x, t; y, τ)ϕ(y, τ)]dτdS(y), (3)

in which c(x) = 1/2 for x on the boundary S (assume to be smooth), y is
the source point on the boundary, q(y, τ) = ∂ϕ/∂n is the normal deriva
tive of the sound velocity potential ϕ at point y and at time τ,
F(x, t; y, τ) = ∂G(x, t; y, τ)/∂n(y) is the normal derivative of the funda
mental solution G(x, t; y, τ).

Next, the expression of the time-domain fundamental solution (2) is
substituted into the time-domain BIE (3). Using the filter property of the
Dirac δ function distribution in time and taking the time derivative, we
obtain the following form of the 3D time-domain BIE [19] :

1
2

ϕ(x, t) =
∫

S
q
(

y, t −
r
c

) 1
4πr

dS(y) +
∫

S
ϕ
(

y, t −
r
c

) 1
4πr2

∂r
∂n

dS(y)

+

∫

S

∂ϕ
∂t

(
y, t −

r
c

) 1
4πrc

∂r
∂n

dS(y).
(4)

Eq. (4) is used to solve the null initial condition (i.e., ϕ = q = 0 for t <
0), the boundary conditions ϕ or q = ∂ϕ/∂n are given, solve for the un
known quantity on the boundary, and one can obtain the sound pressure

Fig. 1. Structure V and the acoustic domain E.

Z. Gao et al.

Engineering Analysis with Boundary Elements 161 (2024) 103–112

105

at any field point in the domain. For exterior problems, the Sommerfeld
condition at infinity is satisfied by the solution of BIE (3) or BIE (4).

For solving time domain acoustic problems, the boundary can be
discretized into constant, linear, quadratic or other higher-order ele
ments. To discretize BIE (4) in this study, we use constant boundary
elements on the boundary and the temporal axis is divided by a constant
time step of size Δt, with the number of total time steps equal to NT. With
the piecewise-constant and piecewise-linear bases for space and time,
respectively, the boundary variables ϕ and q are approximated by ϕj and
qj on the jth element Ej and for t > 0, and are expressed as follows:

ϕj(t) =
∑NT

k=0
Nk

t (t)ϕ
k
j , qj(t) =

∑NT

k=0
Nk

t (t)q
k
j , (5)

respectively, where ϕk
j and qk

j designate the values of ϕj and qj on
element Ej and at the kth time step tk, respectively. Functions Nk

t are
given as follows:

Nk
t (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t − kΔt)
Δt

+ 1, (k − 1)Δt ≤ t ≤ kΔt,

−
(t − kΔt)

Δt
+ 1, kΔt < t ≤ (k + 1)Δt,

0, elsewhere.

(6)

Nk
t is the piecewise-linear interpolation function of time as shown in

Fig. 2.
The boundary variables ϕ and q are represented by evenly spaced

sub-intervals with a linear approximation for the time dependency
(Fig. 3). This results in constant functions being used to approximate ∂ϕ

∂t .
As a result, the time derivative of the time interpolation function ∂

∂tN
k
t (t)

is used to approximate the time derivative of ϕ.
Inserting these approximations into BIE (4), we can obtain the

following discretized BIE at time step tm:

1
2
ϕm

i =
∑N

j=1

[
∑m

k=1

∫

Ej

Nk
t (t

′
m)

1
4πr

dSj⋅qk
j

]

+
∑N

j=1

[
∑m

k=1

∫

Ej

Nk
t (t

′
m)

1
4πr2

∂r
∂n

dSj⋅ϕk
j

]

−
∑N

j=1

[
∑m

k=1

∫

Ej

∂
∂t

Nk
t (t

′
m)

1
4πrc

∂r
∂n

dSj⋅ϕk
j

]

.

(7)

where t′m is the retarded time t′m = tm − r
c.

To solve Eq. (7) at time step tm, we rearrange the equation in a
standard form for a linear system of equations:

Ax=b, (8)

in which A is the coefficient matrix with a dimension of N by N, x is the
vector with unknowns ϕm

i or qm
i on each element, and b is the known

right-hand-side vector computed from the known boundary values.
Finally, we note a property that can be used to effectively save the

memory usage. The time loop in Eq. (7) needs to start from 1, but due to
the truncated attributes of the fundamental solution, many of these

terms have zero values, where the non-zero values depend on the
maximum distance rmax between element Ei and Ej, specified as:

Ntmin =
rmax

cΔt
+ 1, (9)

where Ntmin is the minimum number of time steps that need to be
computed for the pair of elements Ei and Ej. Thus, the number of time
loops m in Eq. (7) can be reduced to Ntmin, when m > Ntmin.

2.2. A kernel-function library based TDBEM

One of the problems for the TDBEM is the consumption of large
amount of memory. In order to avoid calculating the kernel functions for
the same time difference at different time steps, the kernel functions for
each time difference are usually stored, which brings the amount of
storage to O(N2Ntmin). However, it is not possible to store all the data for
larger scale models. Only a portion of the coefficients can be stored, and
the remaining coefficients will need be recomputed, which increases the
computation time. Therefore, it is necessary to develop a new method
for storing coefficients to save memory and not to increase the compu
tational effort at the same time.

In Eq. (8), computing the matrix A is only related to the current time
step, but computing the right-hand-side vector b requires Ntmin time
loops when the m − Ntmin > 0, i.e., all boundary values need to be
considered. Computing the vector b requires a large amount of memory
usage when Ntmin is large. Due to the truncation of the kernel function,
the coefficient matrix is usually sparse. It is not difficult to solve the
system of linear equations. Therefore, often the computation of the
vector b containing the time loops occupy a larger proportion of the
overall computation.

The pseudo codes of the main program and the subroutine for the
vector b generation when the m − Ntmin > 0 for the TDBEM is given
below.

Code 1 Main
Input the element and node information and boundary conditions
1: for time step m ¼1,2, …, Nt do
2: Compute the vector b for current time step m according to Code 2.
3: Compute the coefficient matrix A for current time step m.
4: Solve the Ax ¼ b to obtain the unknown vector x.
5: Compute ϕ at any field point in the space if needed.
6: end for

Code 2 Compute the vector b
1: for element j ¼ 1, 2, …, N do
2: for node i ¼1, 2, …, N do
3: if i ∕= j then
4: for l ¼ m − Ntmin to m do
5: Numerical Gaussian quadrature of the kernel function computed

according to the Eq. (7)
6: end for
7: else
8: for l ¼ m − Ntmin to m do
9: Analytical integration of the kernel function computed according to

the Eq. (7)
10: end for
11: end if
12: end for
13: end for

Fig. 2. Piecewise-linear interpolation function of time for t =tk.

Fig. 3. Functions ϕ and q are approximated with the piecewise-linear bases
in time.

Z. Gao et al.

Engineering Analysis with Boundary Elements 161 (2024) 103–112

106

Through the Code 2 it can be learned that in the process of calcu
lating the vector b, a loop of Ntmin times is needed for computing the
kernel with the effect of retarded time. If coefficients at all time steps
are stored, it will need a huge amount of storage space. If coefficients
at only a part of time steps are stored, it will increase the computation
time.

However, computing kernel function is only related to the r, ∂r /∂n
(Fig. 4) and the time step size Δt. Therefore, we can generate a library in
which values of those terms are stored. The library can be directly used
in calculating the kernel functions at all time steps.

In this paper, the minimum value of rmin is set to be cΔt, the
maximum value of r is related to the overall size of the model (rmax) and
∂r/∂n = cosβ is between -1 and 1. The kernel function library can be used
for the far-away elements, whose distance from the element C is greater
than the minimum value, as shown in Fig. 5. The elements, for which the
distances from element C are less than the minimum value, are called the
near elements, and the kernel functions on the near elements are
computed using the direct method. The influence of the selection of near
elements on the computing results is discussed in the numerical example
in Section 3.1.

We define the Nr and N∂r/∂n as the numbers of r and ∂r /∂n that need to
be stored in the library, respectively. The pseudo code for the library
generation is given below.

Code 3 Generate the library
1: Input the rmin, rmax
2: for i ¼1, 2, …, Nr do
3: for j ¼1, 2, …, N∂r/∂n do
4: for l ¼ m − Ntmin to m do

5: Compute the kernel function Nl
t(t′m)

1
4πr

, Nl
t(t′m)

1
4πr2

∂r
∂n

,
∂
∂t

Nl
t(t

′
m)

1
4πrc

∂r
∂n

in Eq. (7), and store the nonzero kernel function and the corresponding l.
6: end for
7: end for
8: end for

According to Code 3, we compute and store the kernels in the library
for the different r and ∂r/∂n, which are selected at equal intervals Δr and
Δ(∂r/∂n) to facilitate program calls, the influence of the choice of Δr and
Δ(∂r/∂n) on the computing results is also discussed in the numerical
example in Section 3.1.

From the Eq. (6), we can see that for every r and ∂r /∂n, there will be
two sets of non-zero kernel functions and l. So the memory usage of the
kernel function library is O(2 × 4NrN∂r/∂n).

In the library, when the r = cΔt + iΔr, ∂r/∂n = − 1 + jΔ(∂r/∂n), we
store the nonzero kernel functions as follows (Table 1):

For Code 2, when the r and ∂r/∂n are given, the results in the library
can be called directly, reducing the scale of memory consumption from
O(N2Ntmin) to O(N2 + 8NrN∂r/∂n), in which Nr is generally equal to N, and
N∂r/∂n is generally much smaller than N, when N is larger, leading to
O(N2 + 8NrN∂r/∂n) ∼ O(N2).

The following is the pseudo code for calculating the vector b using
the kernel function library when the m − Ntmin > 0.

Code 4 Compute the vector b using the kernel function library
1: for element j ¼ 1, 2, …, N do
2: for node i ¼1, 2, …, N do
3: if i ∕= j then
4: if r < cΔt then
5: for l ¼ m − Ntmin to m do
6: Numerical Gaussian quadrature of the kernel function computed

according to the Eq. (7)
7: end for
8: else
9: Numerical Gaussian quadrature of the kernel function called directly

or interpolated from the library
10: end if
11: else
12: for l ¼ m − Ntmin to m do
13: Analytical integration of the kernel function computed according to

the Eq. (7)
14: end for
15: end if
16: end for
17: end for

Because the r and ∂r/∂n in the library are selected by equal intervals,
there will be slight differences in values between those from the library
and those computed directly. Therefore, we need to perform linear
interpolation on the value of kernels in the library according to the
relationship between the value computed directly and the value from
the library. Then the results from the interpolation can be used for
subsequent computing.

3. Verification

In order to verify the accuracy and show advantages of the KFL-BEM,
two examples with analytical solutions are presented in this section first.
That is, a problem of a pulsating sphere and a problem of sound prop
agation in a channel. Through the comparison of the computed results of
the sound pressure at the boundary points and/or field points with those
from the analytical solutions, the accuracy and efficiency of the KFL-
BEM can be verified and studied. Results for all examples are
computed on a PC workstation with an Intel(R) Xeon(R) CPU E5-2650
v4 at 2.2GHz and RAM size of 64 GB. The program is written in
Fortran language and Intel Math Kernel Library is used to solve the
linear system of equations.

3.1. Radiation problem of a pulsating sphere

A pulsating sphere at a single frequency is considered as the first
example testing the KFL-BEM, for which the analytical solution is readily
available for checking the BEM solution. The radius of the pulsing sphere
is 0.5 m and its center is located at the point (0, 0, 0) m. The surface of
the sphere is divided into 10800 and 19200 triangular constant ele
ments, respectively (Fig. 6). The time interval is 0.0001s, and 1000 time
steps are computed. The normal vibration velocity of the sphere surface

Fig. 4. The distance r and normal derivative ∂r/∂n = cosβ between elements i
and j. Fig. 5. Group of elements for element C.

Z. Gao et al.

Engineering Analysis with Boundary Elements 161 (2024) 103–112

107

is given as q = v0sin(ωt), where v0 = 1m /s, and ω is the angular fre
quency. The field point where the sound pressure is evaluated is located
at (0, 0, 1) m.

The computed results of sound pressure at the boundary points and
the field point of the pulsating sphere are compared with the analytical
values of the pulsating sphere, where different numbers of elements are
used. The expression for the analytical value is given by:

ϕ(x, t) = ρcv0ka2

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (ka)2
√ sin[ωt − k(r − a)+ θ], (10)

where ρ = 1.29kg ⋅ m− 3 is the mass density, c = 343m ⋅ s− 1 is the speed of
sound, k is the wave number, a is the radius of the pulsating sphere, r is
the distance from the center of the sphere to the field point, ω = 2πf is the
angular frequency, f is the frequency, and θ = arctan(1 /ka).

The sound pressure on the boundary and at the field point at two
frequencies, 100 Hz and 500 Hz, are computed. To obtain the sound
pressure values, it is necessary to use TDBEM to compute the acoustic
velocity potential ϕ(x, t) and then use the following formula to compute
the sound pressure:

p(x, t) = − ρ ∂
∂t

ϕ(x, t). (11)

We use the pulsating sphere divided into 10,800 elements and at the
frequency of 100 Hz as an example to compare the effects of near-field
and far-field selections and the selection of Nr and N∂r/∂n in the library
on the results. Since the value of ∂r/∂n ranges from − 1 to 1 and does not
vary with the degrees of freedom of the model, the number of N∂r/∂n in all
examples in this paper is set to 1000 and the size of Δ(∂r/∂n) is 0.002.
The influence of Nr and the near-elements selection rmin on the results is
mainly discussed below.

We set the library, in which rmin is 0.01m, rmax is 1m and the value of
Nr is 100, 500, 1000, and 10000, respectively. The computed results of
CBEM and KFL-BEM with different numbers of Nr are compared with the
analytical solutions, and the influence of Nr on computational accuracy
and stability is discussed.

The relative errors of the CBEM and the KFL-BEM at the boundary
points are studied. Starting from 0.01s, relative errors are computed at
selected time intervals every 20 steps, as shown in Fig. 7.

We can see from the Fig. 7 that when the Nr is equal to 100, the
computing results diverge due to the large error, part of the results after
divergence are not shown in the Fig. 7; when the Nr is equal to 1000, the
error is basically less than 3%; when the Nr is equal to 10,000, the
number of Nr in the library is basically the same as the degree of freedom
of the model, and the error of the KFL-BEM is consistent with the CBEM
on the whole model.

The influence of the selection of near elements on the result is dis
cussed below. The value of rmin is selected as 0.001m, 0.01m, 0.03m to
determine the near element. For the case when 0.03 m is approximately
equal to cΔt, the value of Nr is equal to 1,000, the accuracy of the

computed results is compared in Fig. 8.
As can be seen from Fig. 8, with the increase of rmin, the computa

tional accuracy gradually increases. However, compared with the effect
of Nr, rmin has a smaller effect on the accuracy.

It is worth noting that for the first few initial time steps, due to the
presence of the delay time tr = t − r /c, there exists a significant devi
ation between the results of the BEM and the steady-state analytical
solution. Because the full acoustic wave has not propagated to all ele
ments and the field point in these initial steps, there is always a small
segment that deviates slightly from the analytic solution at the begin
ning of time scale in Figs. 7 and 8.

From the above discussion, the computational error gradually de
creases with the increase of Nr and rmin. When Nr and the number of
elements are similar, and the near field is determined by rmin = cΔt, the
error of KFL-BEM is basically the same as that of CBEM.

Setting Nr as 1000 and rmin as 0.01 m in the library, we compute the
pulsating sphere model when the number of elements is 10800 and
19200, respectively. Then we compare the computing time and memory
usage of CBEM and KFL-BEM as shown in Table 2.

For this case, Ntmin is equal to 30, and the estimated memory usage of
CBEM is Ntmin times the size of the single step memory usage. In Table. 2,
it is observed that the memory usage of the KFL-BEM consumes slightly
more memory than the single step memory usage of the CBEM, due to
the need for additional kernel function library storage. However, the
estimated memory usage of the CBEM is proportional to Ntmin. Because
the estimated memory usage is too large to store, the CBEM only stores
coefficients at one time step and recompute other coefficients.

In the case of the same memory usage for the CBEM and KFL-BEM,
the CBEM need to recompute other coefficients, resulting in signifi
cantly longer computing time compared to the KFL-BEM. When the
numbers of elements are 10,800 and 19,200, the wall clock time for all
time steps with the CBEM is 2.65 and 2.57 times of those with the KFL-
BEM, respectively. For the CBEM, the memory usage increases linearly
with each additional time step of the coefficients stored, while the
computing time decreases accordingly. On the other hand, the KFL-BEM
only requires the storage of the kernel function library, and the memory
usage is only dependent on the model and kernel function library sizes
rather than the number of time steps.

Finally, the time retarded phenomenon of the field points at different
distances from the center of the sphere is discussed. Field points were set
at (1, 0, 0), (2, 0, 0), (3, 0, 0), and (4, 0, 0) m respectively, using the same
library as the example in Table 2 to compute the sound pressure with
time. Fig. 9

The sound pressure results of field points at different distances from
the sphere center all satisfy the time retarded equation tr = t − r /c.

3.2. Problem of sound propagation in A channel

To further verify the accuracy of the program, a plane wave (or sine
wave) propagating in a channel is studied. The length of the channel is 2
m, with a square cross-sectional area measured by 0.5 m X 0.5 m. The z
coordinate of the left end of the channel is 0 (Fig. 10). The surfaces of the
channel are divided into 14400 constant triangular elements, and the
computation is performed for 1000 time steps with a time interval Δt of
0.0001 s. The sound velocity potential at the boundary point (-0.0083,
0.0083, 0) m is computed and compared with the analytical solution.
Fig. 11

In this case, sound propagates along the +z-axis. The boundary
condition on the z = 0 m end is specified as a known function of q = H(t)
m/s, where H(t) is the Heaviside function. The boundary condition on
the z = 2 m is specified as a known ϕ = 0. The side surfaces have q =
0 boundary conditions. Hence, it is essentially a 1D problem for which
the analytical solution exists [19].

Comparing the KFL-BEM and CBEM solutions with the analytical
solution, it is observed that at different time steps, all the computed
results of the KFL-BEM exhibit a good agreement with those of the

Fig. 6. Diagram of the pulsating sphere (a) and the mesh using boundary el
ements for N = 10800 (b).

Z. Gao et al.

Engineering Analysis with Boundary Elements 161 (2024) 103–112

108

analytical solution.
We set Nr as 11000 and rmin as 0.03 in the library, similar to the

values in computing the pulsating sphere model. Because the estimated
memory usage is too large to store, the CBEM only stores the coefficients
for the current time step, while the coefficients for previous time steps
needed are recomputed. The number of boundary elements for the

channel is 14400. For this example, Ntmin is 69, by comparing the
memory usage and computation time between the CBEM and the KFL-
BEM, it is found that the CBEM consumes 1,973.7 Mb of memory,
while the KFL-BEM consumes 2,981.4 Mb of memory. The estimated
memory usage of CBEM is 136,185.3 Mb. In this case, a total of 1000
time steps are computed. The wall clock time for all time steps in the
CBEM is approximately 640,921 s, while for the KFL-BEM the wall clock
time is approximately 224,316 s. The wall clock time using the CBEM is
2.86 times longer than the wall clock time using the KFL-BEM.

By analyzing the radiation problem of a pulsating sphere and the

Fig. 7. The computed results on boundary point (0.5, 0, 0) m using the CBEM and the KFL-BEM with different numbers of Nr (a) and the errors (b).

Fig. 8. The computed results on boundary point (0.5, 0, 0) m using the CBEM and the KFL-BEM with the different values of rmin (a) and the errors (b).

Table 1
Kernel functions stored in library.

l1 l2

Nl1
t (t′m)

1
4π(cΔt + iΔr)

Nl2
t (t′m)

1
4π(cΔt + iΔr)

Nl1
t (t′m)

1
4π(cΔt + iΔr)2 (− 1 + jΔ(∂r/∂n)) Nl2

t (t′m)
1

4π(cΔt + iΔr)2
(− 1 + jΔ(∂r/∂n))

∂
∂t

Nl1
t (t

′
m)

1
4π(cΔt + iΔr)c

(− 1 +

jΔ(∂r/∂n))

∂
∂t

Nl2
t (t

′
m)

1
4π(cΔt + iΔr)c

(− 1 +

jΔ(∂r/∂n))

Table 2
Comparison of the computing time and memory usage by CBEM and KFL-BEM.

No. of
elements

Wall clock time
for all time steps
(s)

Single step
memory usage
(Mb)

Estimated
memory usage
(Mb)

CBEM 10,800 206,460 1,193 35,790
KFL-

BEM
10,800 77,940 1,277 1,277

CBEM 19,200 732,600 3,336 100,080
KFL-

BEM
19,200 285,060 3,427 3,427

Fig. 9. The computed results on field points using the KFL-BEM

Z. Gao et al.

Engineering Analysis with Boundary Elements 161 (2024) 103–112

109

sound propagation problem in a channel, we can conclude that when the
coefficients at only a single time step are stored, the KFL-BEM will use a
similar size of memory as the CBEM. When considering equal levels of
memory usage, the KFL-BEM offers significant advantages in computa
tional efficiency while maintaining an acceptable level of accuracy. As
mentioned above, since the size of the memory used by the KFL-BEM can
be pre-determined, that is, it is only related to the size of the model and
size of the kernel function library, and independent of the number of
time steps.

4. A tuning fork example

To show the potential applications of the developed time-domain
KFL-BEM, we model the vibro-acoustic responses of a tuning fork
under various striking excitations. The results are used to generate a ‘.
wav’ file based on the sound pressure values as a function of time at a
specified field point. This allows us to hear directly the sound produced
by the tuning fork through numerical simulations.

A tuning fork is a metallic instrument with two arms that produces a
consistent, fixed frequency sound. It serves as an effective tool for in
strument tuning and pitch determination. In 2000, Russell [30] inves
tigated the acoustic radiation properties of tuning forks in the frequency
domain and compared them to linear quadrupole or dipole sources with
respect to various vibration modes. This paper presents a time-domain
analysis of the sound radiation generated by the vibration of a tuning
fork under different strikes. The commercial FEM software Abaqus is
utilized to compute the vibration responses of the fork, and the vibration
velocities of the surface nodes are extracted to form the input for the
KFL-BEM sound field computation. The contour plots of the sound ve
locity potential of the field at different time steps are provided for
comparison with research findings in Ref. [30].

To investigate the sound radiation characteristics of a tuning fork
under different striking loads, four different striking loads are applied
(Fig. 12). The commercial tuning fork has an arm length of 95 mm and a
distance of 13.3 mm between the arms, and rectangular cross-section
arms with dimensions of 5.7 mm X 10 mm. This tuning fork has the
standard frequency of 440 Hz. The surface of the tuning fork is divided
into 10,772 triangular constant elements (Fig. 13). An annulus field
surface with an outer diameter of 1 m and an inner diameter of 0.04 m is
used, the center of the annular surface is located on the main axis of the
tuning fork. The field surface is further divided into 5,200 quadrilateral
elements. The time interval is 0.0005 seconds, with a total of 2000 time
steps performed, resulting in a total duration of 1 s.

Figs. 14 and 15 respectively show the modal shape of the tuning fork
and the velocity time response of the end of the tuning fork arm under
the symmetry striking loading computed by Abaqus.

The velocity computed by the FEM is projected onto the element
normal direction as the boundary condition with known q, and the
sound pressure of field points is computed by the KFL-BEM. Fig. 16
shows contour plots of the acoustic velocity potential at different time
and under different striking loads showed in Fig. 12. The two arms of the
tuning fork are represented by two small rectangles.

Through the contour plots of the sound field around the tuning fork,
we observe that the sound radiation direction of the tuning fork varies
with different striking loads, which aligns with the directional pattern
obtained by Russell [30].

The time-varying pressure curves at the filed point (-0.489, 0.06,
0.003) m of the KFL-BEM and the CBEM for the striking load in Fig. 12
(a) are plotted in Fig. 17.

The computation time for all time steps in the CBEM is 217,260 s,
while that for the KFL-BEM it is 146,280 s. Performing an inverse Fourier
transform on the data from Fig. 17 yields a vibration frequency of 447
Hz, with a relative error of 1.59% compared to the vibration frequency
of the tuning fork (at 440 Hz). The numerical errors in the acoustic-
structure analysis are acceptable, indicating the effectiveness of using
this method for time-domain acoustic-structure analysis in different
scenarios.

By increasing the number of time steps from 2,000 to 8,000, we
obtain a set of results depicting the variation of sound pressure over time
for the case of the folk under the symmetry strike and for a duration of 4
seconds. Using these results, we can generate a ‘.wav’ file that allows us
to directly listen to the sound produced after striking the tuning fork
(this sound file is provided as a supplement file with this paper).

5. Conclusions

To improve the computational efficiency regarding the memory
usage and computing time of the TDBEM for modeling 3D acoustic
problems, we propose a kernel-function library time-domain BEM (KFL-
BEM) in this paper. This method can effectively remedy the large
memory consumption problem in the TDBEM, which can avoid the
redundant computations of the same time differences at many different
time steps. As a result, the memory consumption of time-domain
acoustic BEM is reduced from O(N2Ntmin) to O(N2). Numerical verifi
cations of the KFL-BEM are provided, showing that the memory usage of
the KFL-BEM can be pre-determined, independent of Ntmin, and is similar
to the CBEM when it only stores coefficients for a single time step.
However, the KFL-BEM exhibits higher computational efficiency
compared to the CBEM in this context, as no coefficients need to be
computed repeatedly. Computations of vibro-acoustic problems under
transient loads often require smaller time intervals and more time steps
to compute the responses. Consequently, the benefit in memory-saving
of the KFL-BEM becomes even more relevant. As an example, a vibro-
acoustic analysis using a tuning fork under different striking loads is
conducted. Based on the computed data, one can directly hear the sound
emitted by the vibrating fork using the time-domain BEM, which is
intriguing and may find more interesting applications in different fields.

Fig. 10. Boundary elements used for the channel model with N = 14400.

Fig. 11. The sound velocity potential at the boundary point (-0.0083, 0.0083,
0) m.

Z. Gao et al.

Engineering Analysis with Boundary Elements 161 (2024) 103–112

110

The advantages of the KFL-BEM in reducing memory usage can be
extended to the BEM for solving other time-domain problems, such as
transient elastodynamic and electromagnetic problems. Fast solution
methods, such as the FMM, ACA and fast direct solvers, can also be
implemented with the KFL-BEM to further improve the computational
efficiencies in solving large-scale time-domain problems.

CRediT authorship contribution statement

Zhenyu Gao: Writing – original draft, Software, Investigation,
Formal analysis, Data curation. Zonglin Li: Investigation, Formal
analysis, Data curation. Yijun Liu: Writing – review & editing, Super
vision, Software, Resources, Project administration, Methodology,
Funding acquisition, Conceptualization.

Fig. 12. Four different striking loads.

Fig. 13. The tuning fork used (a) and the boundary elements applied (b).

Fig. 14. Modal shape of tuning fork.

Fig. 15. the velocity time response of the end of the tuning fork arm.

Z. Gao et al.

Engineering Analysis with Boundary Elements 161 (2024) 103–112

111

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests:

Yijun Liu reports financial support was provided by National Natural

Science Foundation of China. If there are other authors, they declare that
they have no known competing financial interests or personal re
lationships that could have appeared to influence the work reported in
this paper.

Fig. 16. Contour plots of the sound field at different time steps with the tuning fork under different striking loads.

Z. Gao et al.

Engineering Analysis with Boundary Elements 161 (2024) 103–112

112

Data availability

No data was used for the research described in the article.

Acknowledgement

The authors would like to thank the following financial support for
this work: the National Natural Science Foundation of China (Project
Nos. 11972179 and 12372198), the Natural Science Foundation of
Guangdong Province (No. 2020A1515010685), and the Department of
Education of Guangdong Province (No. 2020ZDZX2008).

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.enganabound.2024.01.001.

References

[1] Brebbia CA. The boundary element method for engineers. London: Pentech Press;
1978.

[2] Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method : its basis and
fundamentals. Seventh ed. Oxford, UK: Butterworth-Heinemann; 2013.

[3] Liu YJ. On the BEM for acoustic wave problems. Eng Anal Bound Elem 2019;107:
53–62. No.

[4] Burton AJ, Miller GF. The application of integral equation methods to the
numerical solution of some exterior boundary-value problems. Proc R Soc. A, Math
Phys Eng Sci 1971;323(1553):201.

[5] Meyer WL, Bell WA, Zinn BT, Stallybrass MP. Boundary integral solutions of three
dimensional acoustic radiation problems. J Sound Vib 1978;59(2):245–62.

[6] Cunefare KA, Koopmann G, Brod K. A boundary element method for acoustic
radiation valid for all wavenumbers. J Acoust Soc Am 1989;85(1):39–48.

[7] Liu YJ, Chen S. A new form of the hypersingular boundary integral equation for 3-D
acoustics and its implementation with C0 boundary elements. Comput Methods
Appl Mech Eng 1999;173(3):375–86.

[8] Greengard L, Rokhlin V. A fast algorithm for particle simulations. J Comput Phys
1997;135(2):280–92.

[9] Nishimura N, Yoshida K-i, Kobayashi S. A fast multipole boundary integral
equation method for crack problems in 3D. Eng Anal Bound Elem 1999;23(1):
97–105.

[10] Liu YJ, Nishimura N, Yao ZH. A fast multipole accelerated method of fundamental
solutions for potential problems. Eng Anal Bound Elem 2005;29(11):1016–24.

[11] Shen L, Liu YJ. An adaptive fast multipole boundary element method for three-
dimensional acoustic wave problems based on the Burton–Miller formulation.
Comput Mech 2007;40(3):461–72.

[12] Huang S, Liu YJ. A new simple multidomain fast multipole boundary element
method. Comput Mech 2016;58(3):533–48.

[13] Liu YJ. Fast multipole boundary element method : theory and applications in
engineering. Cambridge: Cambridge University Press; 2009.

[14] Hackbusch W. A sparse matrix arithmetic based on h-matrices. Part I : Introduction
to h-matrices. Computing 1999;62(2):89–108.

[15] Bebendorf M. Approximation of boundary element matrices. Numer Math
(Heidelb) 2000;86(4):565–89.

[16] Martinsson PG, Rokhlin V. A fast direct solver for boundary integral equations in
two dimensions. J Comput Phys 2005;205(1):1–23.

[17] Lai J, Ambikasaran S, Greengard LF. A fast direct solver for high frequency
scattering from a large cavity in two dimensions. SIAM J Sci Comput 2014;36(6):
B887–903.

[18] Li R, Liu YJ, Ye W. A fast direct boundary element method for 3D acoustic
problems based on hierarchical matrices. Eng Anal Bound Elem 2023;147:171–80.

[19] Langer S, Schanz M. Time domain boundary element method. In: Marburg S,
Nolte B, editors. Computational acoustics of noise propagation in fluids - finite and
boundary element methods. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008.
p. 495–516.

[20] Ergin AA, Shanker B, Michielssen E. Fast evaluation of three-dimensional transient
wave fields using diagonal translation operators. J Comput Phys 1998;146(1):
157–80.

[21] Ergin AA, Shanker B, Michielssen E. Fast transient analysis of acoustic wave
scattering from rigid bodies using a two-level plane wave time domain algorithm.
J Acoust Soc Am 1999;106(5):2405–16.

[22] Ergin AA, Shanker B, Michielssen E. Fast analysis of transient acoustic wave
scattering from rigid bodies using the multilevel plane wave time domain
algorithm. J Acoust Soc Am 2000;107(3):1168–78.

[23] Takahashi T. An interpolation-based fast-multipole accelerated boundary integral
equation method for the three-dimensional wave equation. J Comput Phys 2014;
258:809–32.

[24] Takahashi T, Tanigawa M, Miyazawa N. An enhancement of the fast time-domain
boundary element method for the three-dimensional wave equation. Comput Phys
Commun 2022;271:108229.

[25] Takahashi T. A fast time-domain boundary element method for three-dimensional
electromagnetic scattering problems. J Comput Phys 2023;482:112053.

[26] Aimi A, Desiderio L, Di Credico G. Partially pivoted ACA based acceleration of the
energetic BEM for time-domain acoustic and elastic waves exterior problems.
Comput Math Appl 2022;119:351–70.

[27] Thirard C, Parot J-M. On a way to save memory when solving time domain
boundary integral equations for acoustic and vibroacoustic applications. J Comput
Phys 2017;348:744–53.

[28] Yoshikawa NNH. An improved implementation of time domain elastodynamic
BIEM in 3D for large scale problems and its application to ultrasonic NDE. Electron
J Bound Elem 2003;1(2):201–17.

[29] Pan L, Adams DO, Rizzo FJ. Boundary element analysis for composite materials
and a library of Green’s functions. Comput Struct 1998;66(5):685–93.

[30] Russell DA. On the sound field radiated by a tuning fork. Am J Phys 2000;68(12):
1139–45. No.

Fig. 17. Sound pressure-time diagram of sound radiation at the filed point after
striking load on the tuning fork.

Z. Gao et al.

https://doi.org/10.1016/j.enganabound.2024.01.001
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0001
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0001
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0002
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0002
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0003
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0003
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0004
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0004
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0004
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0005
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0005
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0006
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0006
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0007
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0007
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0007
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0008
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0008
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0009
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0009
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0009
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0010
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0010
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0011
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0011
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0011
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0012
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0012
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0013
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0013
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0014
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0014
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0015
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0015
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0016
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0016
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0017
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0017
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0017
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0018
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0018
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0019
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0019
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0019
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0019
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0020
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0020
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0020
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0021
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0021
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0021
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0022
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0022
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0022
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0023
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0023
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0023
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0024
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0024
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0024
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0025
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0025
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0026
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0026
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0026
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0027
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0027
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0027
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0028
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0028
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0028
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0029
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0029
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0030
http://refhub.elsevier.com/S0955-7997(24)00001-8/sbref0030

	A time-domain boundary element method using a kernel-function library for 3D acoustic problems
	1 Introduction
	2 TDBEM based on a kernel-function library
	2.1 Time domain boundary integral equation
	2.2 A kernel-function library based TDBEM

	3 Verification
	3.1 Radiation problem of a pulsating sphere
	3.2 Problem of sound propagation in A channel

	4 A tuning fork example
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	Supplementary materials
	References

