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A B S T R A C T   

Time-domain boundary element method (TDBEM) can be applied in studying transient acoustic wave problems, 
especially in solving exterior problems. However, in order to avoid calculations of coefficients at different time 
steps, TDBEM usually requires storing or recomputing the coefficients at each time step. This can lead to sig
nificant amount of memory usage or long computing time. In this paper, an acoustic TDBEM based on a kernel- 
function library (KFL-BEM) is proposed, in order to reduce the memory consumption of the time-domain con
ventional BEM (CBEM) and speedup the computation. In this approach, the storage requirement is reduced from 
O(N2Ntmin) to O(N2), where N represents the number of degrees of freedom of the model, and Ntmin is the 
minimum number of time steps for which coefficients need to be computed and stored. To demonstrate the 
effectiveness of the KFL-BEM, two verification examples are presented using the problems of a pulsating sphere 
and sound propagating in a channel. Compared with the CBEM, the KFL-BEM can save significantly the memory 
storage as it does not require storing coefficients for any previous time steps. This method can also be applied to 
solve vibro-acoustic problems in the time domain. As an example, the acoustic radiation responses of a tuning 
fork under different striking loads are studied using the finite element method and the proposed KFL-BEM, which 
clearly shows the potentials of the KFL-BEM in solving time-domain acoustic problems.   

1. Introduction 

The boundary element method (BEM) [1] is one commonly used 
method for solving acoustic wave problems. Compared to the finite 
element method (FEM) [2], the BEM does not require partitioning the 
entire computational domain into elements. It only discretizes the sur
face of a 3D domain into boundary elements. Moreover, the radiation 
boundary conditions are automatically satisfied at infinity [3] for 
exterior problems. Therefore, the BEM has been widely used in solving 
acoustic wave problems for several decades [4–7]. 

However, the coefficient matrix of the BEM is usually a dense and 
asymmetric matrix, which makes the BEM expensive to use. In order to 
improve the computational efficiency of the BEM, Rokhlin and Green
gard [8] in 1980’s proposed the fast multipole method (FMM), which 
has been widely applied to the solution of boundary element equations 
over the years [9–13]. In addition, based on the concept of H-matrices 
[14], Bebendorf proposed the adaptive cross approximation (ACA) 
method [15], which is easier to implement to solve the BEM equations 
than using the FMM although it requires more memory usage. With the 

advance of computing hardware, the fast direct solver methods have 
received widespread attention recently [16–18]. Compared to algo
rithms using iterative solvers such as the FMM and ACA, fast direct 
solvers do not suffer from non-convergence issues. All these fast solution 
methods have been widely applied to accelerate the acoustic BEM so
lutions, mainly for frequency-domain problems. 

For acoustic problems, the frequency domain analysis is a common 
and major approach, allowing one to observe a series of acoustic be
haviors related to the frequency responses of structures, material 
models, and so on. On the other hand, in many cases, one is also inter
ested in the behavior of sound waves due to sources of a transient nature, 
such as a few impulse sources in target search of objects. In this case, 
using the time-domain BEM (TDBEM) to solve acoustic problems is a 
more natural and effective approach [19]. 

In contrast, the acceleration of TDBEM has not been extensively 
studied. Ergin et al. [20] has conducted the research on acoustic prob
lems in time domain [21,22]. They proposed a plane wave time-domain 
(PWTD) algorithm for accelerating the TDBEM, which is considered to 
be the time-domain version of the FMM. In addition, Takahashi et al. 
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[23,24] proposed an FMM algorithm based on interpolation for 
time-domain acoustic BEM and also extended the method to the field of 
electromagnetism [25]. Aimi et al. applied the ACA method to the 
acoustic and elastic waves exterior problems in TDBEM [26]. 

Regardless of the utilization of the algorithms for acceleration, the 
large consumption of memory with the TDBEM is still a crucial aspect 
that need to be addressed. In order to avoid computing identical co
efficients during different time steps, it is customary to store these co
efficients with the TDBEM. Therefore, the memory requirement is O 
(N2Ntmin), where N and Ntmin represent the number of degrees of 
freedom in the BEM model and the minimum number of time steps that 
need to be computed, respectively. When Ntmin is small, the coefficient 
matrix is sparse, so in many cases, the exponent of N is actually less than 
2. The upper bound for Ntmin is denoted by NT, which corresponds to the 
total number of time steps. To reduce the memory consumption, Thir
ard’s non-uniform grid time domain method (NGTD) [27] can reduce 
the value of O(N2Ntmin)to O(NαNtmin), where α ranges from 1 to 2. 
Additionally, the implementation of memory-saving algorithms pro
posed in Ref. [28] can reduce the upper bound NT to NT /2 without 
introducing new errors. Current methods to reduce memory usage 
mainly focus on reducing the α, however, the demand of high memory 
shortages can still arise in large-scale computations when the Ntmin is 
large. If it is not possible to store all values of the coefficients, a partial 
storage of the coefficients and recalculation of non-stored coefficients 
can be performed. Unfortunately, this recalculation can significantly 
increase the computation time. 

In 1998, Pan, Adams and Rizzo proposed the idea of using Green’s 
function library in the BEM for modeling composite materials [29]. The 
approach can help users to quickly conduct the analysis of composite 
material models without much knowledge of the BEM by pre-storing the 
matrix or discretized Green’s functions. Borrowing from this idea of the 
Green’s function library, a method based on a kernel function library 
that uses the characteristics of the TDBEM kernel functions is proposed 
in this paper. The construction of the library is only dependent on the 
distances between elements and normal derivatives of elements. The 
library is established once and can be called directly during computation 
at all time steps, instead of computing and storing the coefficients at 
many time steps. The memory occupation with this library approach is 
reduced from O(N2Ntmin) to O(N2), which can remedy the problem of 
massive memory consumption in the TDBEM for solving large-scale 
problems. 

An interesting application of the TDBEM is to facilitate the direct 
numerical computation of sound fields due to a vibrating structure over 
time. This enables us to audibly perceive the sound generated by the 
vibrating structure such as tapping a tuning fork, through structural 
acoustic analysis. In order to achieve this, numerous time steps and 
small-time intervals are typically required. The TDBEM using the kernel 
function library is capable of effectively addressing memory limitations 
in such applications as demonstrated in this paper. 

The paper is organized as follows: In Section 2, we review the 
boundary integral formulations of the TDBEM and the implementation 
details of TDBEM based on the kernel function library (KFL-BEM). In 
Section 3, we verify the accuracy and effectiveness of the algorithm 
through numerical examples of two time-domain acoustic problems. In 
Section 4, we present the FEM-BEM model and computed results 
(including the sound playback file) of the transient vibro-acoustic 
analysis of a tuning fork under different striking loads. In Section 5, 
we provide some discussions and conclusions on this work. 

2. TDBEM based on a kernel-function library 

This section summarizes the formulations of the conventional 
acoustic time-domain BEM. Since the acoustic time-domain BEM re
quires the use of results from previous time steps to compute the 
boundary values at a specific time step, the computation process is time- 
consuming and requires a large amount of memory consumption. 

Therefore, the KFL-BEM is proposed to accelerate the computation 
process and reduce the memory consumption. 

2.1. Time domain boundary integral equation 

In a three-dimensional (3D) domain, the acoustic wave equation can 
be written as: 

∇2ϕ(x, t) − 1
c2

∂ϕ2(x, t)
∂t2 + γ(ξ, t) = 0, ∀x ∈ E, (1)  

in which ∇2 is the Laplacian operator, ϕ is the sound velocity potential at 
point x and time t, c is sound speed, γ(ξ, t) is a possible sound source 
located at ξ and at time t. The acoustic domain E, which can be either a 
finite domain inside a closed surface S or an infinite domain outside the 
closed surface S (Fig. 1), is considered to be isotropic and homogenous. 

If there is a unit point source, that is, γ(ξ, t) = δ(ξ − y, t − τ) (here γ 
represents a unit point and impulse sound source located at y at time τ), 
with δ being the Dirac delta function, then the solution (sound field 
located at x at time t) satisfies the above governing equation is called the 
fundamental solution G(x, t; y, τ). For 3D time-domain acoustic prob
lems, G(x, t; y, τ) is given by the following expression [19]: 

G(x, t; y, τ) = 1
4πr

δ
(

t − τ − r
c

)
, (2)  

where r is the distance between the field point x and source point y. 
To derive the boundary integral equation (BIE) corresponding to the 

acoustic wave Eq. (1), we utilize the second Green’s identity in 
conjunction with the above fundamental solution. As a result, we can 
obtain the following BIE: 

c(x)ϕ(x, t) =
∫ t

0

∫

S
[G(x, t; y, τ)q(y, τ) − F(x, t; y, τ)ϕ(y, τ)]dτdS(y), (3)  

in which c(x) = 1/2 for x on the boundary S (assume to be smooth), y is 
the source point on the boundary, q(y, τ) = ∂ϕ/∂n is the normal deriva
tive of the sound velocity potential ϕ at point y and at time τ, 
F(x, t; y, τ) = ∂G(x, t; y, τ)/∂n(y) is the normal derivative of the funda
mental solution G(x, t; y, τ). 

Next, the expression of the time-domain fundamental solution (2) is 
substituted into the time-domain BIE (3). Using the filter property of the 
Dirac δ function distribution in time and taking the time derivative, we 
obtain the following form of the 3D time-domain BIE [19] : 

1
2

ϕ(x, t) =
∫

S
q
(

y, t −
r
c

) 1
4πr

dS(y) +
∫

S
ϕ
(

y, t −
r
c

) 1
4πr2

∂r
∂n

dS(y)

+

∫

S

∂ϕ
∂t

(
y, t −

r
c

) 1
4πrc

∂r
∂n

dS(y).
(4) 

Eq. (4) is used to solve the null initial condition (i.e., ϕ = q = 0 for t <
0), the boundary conditions ϕ or q = ∂ϕ/∂n are given, solve for the un
known quantity on the boundary, and one can obtain the sound pressure 

Fig. 1. Structure V and the acoustic domain E.  
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at any field point in the domain. For exterior problems, the Sommerfeld 
condition at infinity is satisfied by the solution of BIE (3) or BIE (4). 

For solving time domain acoustic problems, the boundary can be 
discretized into constant, linear, quadratic or other higher-order ele
ments. To discretize BIE (4) in this study, we use constant boundary 
elements on the boundary and the temporal axis is divided by a constant 
time step of size Δt, with the number of total time steps equal to NT. With 
the piecewise-constant and piecewise-linear bases for space and time, 
respectively, the boundary variables ϕ and q are approximated by ϕj and 
qj on the jth element Ej and for t > 0, and are expressed as follows: 

ϕj(t) =
∑NT

k=0
Nk

t (t)ϕ
k
j , qj(t) =

∑NT

k=0
Nk

t (t)q
k
j , (5)  

respectively, where ϕk
j and qk

j designate the values of ϕj and qj on 
element Ej and at the kth time step tk, respectively. Functions Nk

t are 
given as follows: 

Nk
t (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t − kΔt)
Δt

+ 1, (k − 1)Δt ≤ t ≤ kΔt,

−
(t − kΔt)

Δt
+ 1, kΔt < t ≤ (k + 1)Δt,

0, elsewhere.

(6) 

Nk
t is the piecewise-linear interpolation function of time as shown in 

Fig. 2. 
The boundary variables ϕ and q are represented by evenly spaced 

sub-intervals with a linear approximation for the time dependency 
(Fig. 3). This results in constant functions being used to approximate ∂ϕ

∂t . 
As a result, the time derivative of the time interpolation function ∂

∂tN
k
t (t)

is used to approximate the time derivative of ϕ. 
Inserting these approximations into BIE (4), we can obtain the 

following discretized BIE at time step tm: 

1
2
ϕm

i =
∑N

j=1

[
∑m

k=1

∫

Ej

Nk
t (t

′
m)

1
4πr

dSj⋅qk
j

]

+
∑N

j=1

[
∑m

k=1

∫

Ej

Nk
t (t

′
m)

1
4πr2

∂r
∂n

dSj⋅ϕk
j

]

−
∑N

j=1

[
∑m

k=1

∫

Ej

∂
∂t

Nk
t (t

′
m)

1
4πrc

∂r
∂n

dSj⋅ϕk
j

]

.

(7)  

where t′m is the retarded time t′m = tm − r
c. 

To solve Eq. (7) at time step tm, we rearrange the equation in a 
standard form for a linear system of equations: 

Ax=b, (8)  

in which A is the coefficient matrix with a dimension of N by N, x is the 
vector with unknowns ϕm

i or qm
i on each element, and b is the known 

right-hand-side vector computed from the known boundary values. 
Finally, we note a property that can be used to effectively save the 

memory usage. The time loop in Eq. (7) needs to start from 1, but due to 
the truncated attributes of the fundamental solution, many of these 

terms have zero values, where the non-zero values depend on the 
maximum distance rmax between element Ei and Ej, specified as: 

Ntmin =
rmax

cΔt
+ 1, (9)  

where Ntmin is the minimum number of time steps that need to be 
computed for the pair of elements Ei and Ej. Thus, the number of time 
loops m in Eq. (7) can be reduced to Ntmin, when m > Ntmin. 

2.2. A kernel-function library based TDBEM 

One of the problems for the TDBEM is the consumption of large 
amount of memory. In order to avoid calculating the kernel functions for 
the same time difference at different time steps, the kernel functions for 
each time difference are usually stored, which brings the amount of 
storage to O(N2Ntmin). However, it is not possible to store all the data for 
larger scale models. Only a portion of the coefficients can be stored, and 
the remaining coefficients will need be recomputed, which increases the 
computation time. Therefore, it is necessary to develop a new method 
for storing coefficients to save memory and not to increase the compu
tational effort at the same time. 

In Eq. (8), computing the matrix A is only related to the current time 
step, but computing the right-hand-side vector b requires Ntmin time 
loops when the m − Ntmin > 0, i.e., all boundary values need to be 
considered. Computing the vector b requires a large amount of memory 
usage when Ntmin is large. Due to the truncation of the kernel function, 
the coefficient matrix is usually sparse. It is not difficult to solve the 
system of linear equations. Therefore, often the computation of the 
vector b containing the time loops occupy a larger proportion of the 
overall computation. 

The pseudo codes of the main program and the subroutine for the 
vector b generation when the m − Ntmin > 0 for the TDBEM is given 
below.  

Code 1 Main 
Input the element and node information and boundary conditions 
1: for time step m ¼1,2, …, Nt do 
2: Compute the vector b for current time step m according to Code 2. 
3: Compute the coefficient matrix A for current time step m. 
4: Solve the Ax ¼ b to obtain the unknown vector x. 
5: Compute ϕ at any field point in the space if needed. 
6: end for   

Code 2 Compute the vector b 
1: for element j ¼ 1, 2, …, N do 
2: for node i ¼1, 2, …, N do 
3: if i ∕= j then 
4: for l ¼ m − Ntmin to m do 
5: Numerical Gaussian quadrature of the kernel function computed 

according to the Eq. (7) 
6: end for 
7: else 
8: for l ¼ m − Ntmin to m do 
9: Analytical integration of the kernel function computed according to 

the Eq. (7) 
10: end for 
11: end if 
12: end for 
13: end for  

Fig. 2. Piecewise-linear interpolation function of time for t =tk.  

Fig. 3. Functions ϕ and q are approximated with the piecewise-linear bases 
in time. 
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Through the Code 2 it can be learned that in the process of calcu
lating the vector b, a loop of Ntmin times is needed for computing the 
kernel with the effect of retarded time. If coefficients at all time steps 
are stored, it will need a huge amount of storage space. If coefficients 
at only a part of time steps are stored, it will increase the computation 
time. 

However, computing kernel function is only related to the r, ∂r /∂n 
(Fig. 4) and the time step size Δt. Therefore, we can generate a library in 
which values of those terms are stored. The library can be directly used 
in calculating the kernel functions at all time steps. 

In this paper, the minimum value of rmin is set to be cΔt, the 
maximum value of r is related to the overall size of the model (rmax) and 
∂r/∂n = cosβ is between -1 and 1. The kernel function library can be used 
for the far-away elements, whose distance from the element C is greater 
than the minimum value, as shown in Fig. 5. The elements, for which the 
distances from element C are less than the minimum value, are called the 
near elements, and the kernel functions on the near elements are 
computed using the direct method. The influence of the selection of near 
elements on the computing results is discussed in the numerical example 
in Section 3.1. 

We define the Nr and N∂r/∂n as the numbers of r and ∂r /∂n that need to 
be stored in the library, respectively. The pseudo code for the library 
generation is given below.  

Code 3 Generate the library 
1: Input the rmin, rmax 
2: for i ¼1, 2, …, Nr do 
3: for j ¼1, 2, …, N∂r/∂n do 
4: for l ¼ m − Ntmin to m do 

5: Compute the kernel function Nl
t(t′m)

1
4πr

, Nl
t(t′m)

1
4πr2

∂r
∂n

, 
∂
∂t

Nl
t(t

′
m)

1
4πrc

∂r
∂n 

in Eq. (7), and store the nonzero kernel function and the corresponding l. 
6: end for 
7: end for 
8: end for  

According to Code 3, we compute and store the kernels in the library 
for the different r and ∂r/∂n, which are selected at equal intervals Δr and 
Δ(∂r/∂n) to facilitate program calls, the influence of the choice of Δr and 
Δ(∂r/∂n) on the computing results is also discussed in the numerical 
example in Section 3.1. 

From the Eq. (6), we can see that for every r and ∂r /∂n, there will be 
two sets of non-zero kernel functions and l. So the memory usage of the 
kernel function library is O(2 × 4NrN∂r/∂n). 

In the library, when the r = cΔt + iΔr, ∂r/∂n = − 1 + jΔ(∂r/∂n), we 
store the nonzero kernel functions as follows (Table 1): 

For Code 2, when the r and ∂r/∂n are given, the results in the library 
can be called directly, reducing the scale of memory consumption from 
O(N2Ntmin) to O(N2 + 8NrN∂r/∂n), in which Nr is generally equal to N, and 
N∂r/∂n is generally much smaller than N, when N is larger, leading to 
O(N2 + 8NrN∂r/∂n) ∼ O(N2). 

The following is the pseudo code for calculating the vector b using 
the kernel function library when the m − Ntmin > 0.   

Code 4 Compute the vector b using the kernel function library 
1: for element j ¼ 1, 2, …, N do 
2: for node i ¼1, 2, …, N do 
3: if i ∕= j then 
4: if r < cΔt then 
5: for l ¼ m − Ntmin to m do 
6: Numerical Gaussian quadrature of the kernel function computed 

according to the Eq. (7) 
7: end for 
8: else 
9: Numerical Gaussian quadrature of the kernel function called directly 

or interpolated from the library 
10: end if 
11: else 
12: for l ¼ m − Ntmin to m do 
13: Analytical integration of the kernel function computed according to 

the Eq. (7) 
14: end for 
15: end if 
16: end for 
17: end for  

Because the r and ∂r/∂n in the library are selected by equal intervals, 
there will be slight differences in values between those from the library 
and those computed directly. Therefore, we need to perform linear 
interpolation on the value of kernels in the library according to the 
relationship between the value computed directly and the value from 
the library. Then the results from the interpolation can be used for 
subsequent computing. 

3. Verification 

In order to verify the accuracy and show advantages of the KFL-BEM, 
two examples with analytical solutions are presented in this section first. 
That is, a problem of a pulsating sphere and a problem of sound prop
agation in a channel. Through the comparison of the computed results of 
the sound pressure at the boundary points and/or field points with those 
from the analytical solutions, the accuracy and efficiency of the KFL- 
BEM can be verified and studied. Results for all examples are 
computed on a PC workstation with an Intel(R) Xeon(R) CPU E5-2650 
v4 at 2.2GHz and RAM size of 64 GB. The program is written in 
Fortran language and Intel Math Kernel Library is used to solve the 
linear system of equations. 

3.1. Radiation problem of a pulsating sphere 

A pulsating sphere at a single frequency is considered as the first 
example testing the KFL-BEM, for which the analytical solution is readily 
available for checking the BEM solution. The radius of the pulsing sphere 
is 0.5 m and its center is located at the point (0, 0, 0) m. The surface of 
the sphere is divided into 10800 and 19200 triangular constant ele
ments, respectively (Fig. 6). The time interval is 0.0001s, and 1000 time 
steps are computed. The normal vibration velocity of the sphere surface 

Fig. 4. The distance r and normal derivative ∂r/∂n = cosβ between elements i 
and j. Fig. 5. Group of elements for element C.  
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is given as q = v0sin(ωt), where v0 = 1m /s, and ω is the angular fre
quency. The field point where the sound pressure is evaluated is located 
at (0, 0, 1) m. 

The computed results of sound pressure at the boundary points and 
the field point of the pulsating sphere are compared with the analytical 
values of the pulsating sphere, where different numbers of elements are 
used. The expression for the analytical value is given by: 

ϕ(x, t) = ρcv0ka2

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (ka)2
√ sin[ωt − k(r − a)+ θ], (10)  

where ρ = 1.29kg ⋅ m− 3 is the mass density, c = 343m ⋅ s− 1 is the speed of 
sound, k is the wave number, a is the radius of the pulsating sphere, r is 
the distance from the center of the sphere to the field point, ω = 2πf is the 
angular frequency, f is the frequency, and θ = arctan(1 /ka). 

The sound pressure on the boundary and at the field point at two 
frequencies, 100 Hz and 500 Hz, are computed. To obtain the sound 
pressure values, it is necessary to use TDBEM to compute the acoustic 
velocity potential ϕ(x, t) and then use the following formula to compute 
the sound pressure: 

p(x, t) = − ρ ∂
∂t

ϕ(x, t). (11) 

We use the pulsating sphere divided into 10,800 elements and at the 
frequency of 100 Hz as an example to compare the effects of near-field 
and far-field selections and the selection of Nr and N∂r/∂n in the library 
on the results. Since the value of ∂r/∂n ranges from − 1 to 1 and does not 
vary with the degrees of freedom of the model, the number of N∂r/∂n in all 
examples in this paper is set to 1000 and the size of Δ(∂r/∂n) is 0.002. 
The influence of Nr and the near-elements selection rmin on the results is 
mainly discussed below. 

We set the library, in which rmin is 0.01m, rmax is 1m and the value of 
Nr is 100, 500, 1000, and 10000, respectively. The computed results of 
CBEM and KFL-BEM with different numbers of Nr are compared with the 
analytical solutions, and the influence of Nr on computational accuracy 
and stability is discussed. 

The relative errors of the CBEM and the KFL-BEM at the boundary 
points are studied. Starting from 0.01s, relative errors are computed at 
selected time intervals every 20 steps, as shown in Fig. 7. 

We can see from the Fig. 7 that when the Nr is equal to 100, the 
computing results diverge due to the large error, part of the results after 
divergence are not shown in the Fig. 7; when the Nr is equal to 1000, the 
error is basically less than 3%; when the Nr is equal to 10,000, the 
number of Nr in the library is basically the same as the degree of freedom 
of the model, and the error of the KFL-BEM is consistent with the CBEM 
on the whole model. 

The influence of the selection of near elements on the result is dis
cussed below. The value of rmin is selected as 0.001m, 0.01m, 0.03m to 
determine the near element. For the case when 0.03 m is approximately 
equal to cΔt, the value of Nr is equal to 1,000, the accuracy of the 

computed results is compared in Fig. 8. 
As can be seen from Fig. 8, with the increase of rmin, the computa

tional accuracy gradually increases. However, compared with the effect 
of Nr, rmin has a smaller effect on the accuracy. 

It is worth noting that for the first few initial time steps, due to the 
presence of the delay time tr = t − r /c, there exists a significant devi
ation between the results of the BEM and the steady-state analytical 
solution. Because the full acoustic wave has not propagated to all ele
ments and the field point in these initial steps, there is always a small 
segment that deviates slightly from the analytic solution at the begin
ning of time scale in Figs. 7 and 8. 

From the above discussion, the computational error gradually de
creases with the increase of Nr and rmin. When Nr and the number of 
elements are similar, and the near field is determined by rmin = cΔt, the 
error of KFL-BEM is basically the same as that of CBEM. 

Setting Nr as 1000 and rmin as 0.01 m in the library, we compute the 
pulsating sphere model when the number of elements is 10800 and 
19200, respectively. Then we compare the computing time and memory 
usage of CBEM and KFL-BEM as shown in Table 2. 

For this case, Ntmin is equal to 30, and the estimated memory usage of 
CBEM is Ntmin times the size of the single step memory usage. In Table. 2, 
it is observed that the memory usage of the KFL-BEM consumes slightly 
more memory than the single step memory usage of the CBEM, due to 
the need for additional kernel function library storage. However, the 
estimated memory usage of the CBEM is proportional to Ntmin. Because 
the estimated memory usage is too large to store, the CBEM only stores 
coefficients at one time step and recompute other coefficients. 

In the case of the same memory usage for the CBEM and KFL-BEM, 
the CBEM need to recompute other coefficients, resulting in signifi
cantly longer computing time compared to the KFL-BEM. When the 
numbers of elements are 10,800 and 19,200, the wall clock time for all 
time steps with the CBEM is 2.65 and 2.57 times of those with the KFL- 
BEM, respectively. For the CBEM, the memory usage increases linearly 
with each additional time step of the coefficients stored, while the 
computing time decreases accordingly. On the other hand, the KFL-BEM 
only requires the storage of the kernel function library, and the memory 
usage is only dependent on the model and kernel function library sizes 
rather than the number of time steps. 

Finally, the time retarded phenomenon of the field points at different 
distances from the center of the sphere is discussed. Field points were set 
at (1, 0, 0), (2, 0, 0), (3, 0, 0), and (4, 0, 0) m respectively, using the same 
library as the example in Table 2 to compute the sound pressure with 
time. Fig. 9 

The sound pressure results of field points at different distances from 
the sphere center all satisfy the time retarded equation tr = t − r /c. 

3.2. Problem of sound propagation in A channel 

To further verify the accuracy of the program, a plane wave (or sine 
wave) propagating in a channel is studied. The length of the channel is 2 
m, with a square cross-sectional area measured by 0.5 m X 0.5 m. The z 
coordinate of the left end of the channel is 0 (Fig. 10). The surfaces of the 
channel are divided into 14400 constant triangular elements, and the 
computation is performed for 1000 time steps with a time interval Δt of 
0.0001 s. The sound velocity potential at the boundary point (-0.0083, 
0.0083, 0) m is computed and compared with the analytical solution. 
Fig. 11 

In this case, sound propagates along the +z-axis. The boundary 
condition on the z = 0 m end is specified as a known function of q = H(t) 
m/s, where H(t) is the Heaviside function. The boundary condition on 
the z = 2 m is specified as a known ϕ = 0. The side surfaces have q =
0 boundary conditions. Hence, it is essentially a 1D problem for which 
the analytical solution exists [19]. 

Comparing the KFL-BEM and CBEM solutions with the analytical 
solution, it is observed that at different time steps, all the computed 
results of the KFL-BEM exhibit a good agreement with those of the 

Fig. 6. Diagram of the pulsating sphere (a) and the mesh using boundary el
ements for N = 10800 (b). 
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analytical solution. 
We set Nr as 11000 and rmin as 0.03 in the library, similar to the 

values in computing the pulsating sphere model. Because the estimated 
memory usage is too large to store, the CBEM only stores the coefficients 
for the current time step, while the coefficients for previous time steps 
needed are recomputed. The number of boundary elements for the 

channel is 14400. For this example, Ntmin is 69, by comparing the 
memory usage and computation time between the CBEM and the KFL- 
BEM, it is found that the CBEM consumes 1,973.7 Mb of memory, 
while the KFL-BEM consumes 2,981.4 Mb of memory. The estimated 
memory usage of CBEM is 136,185.3 Mb. In this case, a total of 1000 
time steps are computed. The wall clock time for all time steps in the 
CBEM is approximately 640,921 s, while for the KFL-BEM the wall clock 
time is approximately 224,316 s. The wall clock time using the CBEM is 
2.86 times longer than the wall clock time using the KFL-BEM. 

By analyzing the radiation problem of a pulsating sphere and the 

Fig. 7. The computed results on boundary point (0.5, 0, 0) m using the CBEM and the KFL-BEM with different numbers of Nr (a) and the errors (b).  

Fig. 8. The computed results on boundary point (0.5, 0, 0) m using the CBEM and the KFL-BEM with the different values of rmin (a) and the errors (b).  

Table 1 
Kernel functions stored in library.  

l1 l2 

Nl1
t (t′m)

1
4π(cΔt + iΔr)

Nl2
t (t′m)

1
4π(cΔt + iΔr)

Nl1
t (t′m)

1
4π(cΔt + iΔr)2 ( − 1 + jΔ(∂r/∂n)) Nl2

t (t′m)
1

4π(cΔt + iΔr)2
( − 1 + jΔ(∂r/∂n))

∂
∂t

Nl1
t (t

′
m)

1
4π(cΔt + iΔr)c

( − 1 +

jΔ(∂r/∂n))

∂
∂t

Nl2
t (t

′
m)

1
4π(cΔt + iΔr)c

( − 1 +

jΔ(∂r/∂n))

Table 2 
Comparison of the computing time and memory usage by CBEM and KFL-BEM.   

No. of 
elements 

Wall clock time 
for all time steps 
(s) 

Single step 
memory usage 
(Mb) 

Estimated 
memory usage 
(Mb) 

CBEM 10,800 206,460 1,193 35,790 
KFL- 

BEM 
10,800 77,940 1,277 1,277 

CBEM 19,200 732,600 3,336 100,080 
KFL- 

BEM 
19,200 285,060 3,427 3,427  

Fig. 9. The computed results on field points using the KFL-BEM  
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sound propagation problem in a channel, we can conclude that when the 
coefficients at only a single time step are stored, the KFL-BEM will use a 
similar size of memory as the CBEM. When considering equal levels of 
memory usage, the KFL-BEM offers significant advantages in computa
tional efficiency while maintaining an acceptable level of accuracy. As 
mentioned above, since the size of the memory used by the KFL-BEM can 
be pre-determined, that is, it is only related to the size of the model and 
size of the kernel function library, and independent of the number of 
time steps. 

4. A tuning fork example 

To show the potential applications of the developed time-domain 
KFL-BEM, we model the vibro-acoustic responses of a tuning fork 
under various striking excitations. The results are used to generate a ‘. 
wav’ file based on the sound pressure values as a function of time at a 
specified field point. This allows us to hear directly the sound produced 
by the tuning fork through numerical simulations. 

A tuning fork is a metallic instrument with two arms that produces a 
consistent, fixed frequency sound. It serves as an effective tool for in
strument tuning and pitch determination. In 2000, Russell [30] inves
tigated the acoustic radiation properties of tuning forks in the frequency 
domain and compared them to linear quadrupole or dipole sources with 
respect to various vibration modes. This paper presents a time-domain 
analysis of the sound radiation generated by the vibration of a tuning 
fork under different strikes. The commercial FEM software Abaqus is 
utilized to compute the vibration responses of the fork, and the vibration 
velocities of the surface nodes are extracted to form the input for the 
KFL-BEM sound field computation. The contour plots of the sound ve
locity potential of the field at different time steps are provided for 
comparison with research findings in Ref. [30]. 

To investigate the sound radiation characteristics of a tuning fork 
under different striking loads, four different striking loads are applied 
(Fig. 12). The commercial tuning fork has an arm length of 95 mm and a 
distance of 13.3 mm between the arms, and rectangular cross-section 
arms with dimensions of 5.7 mm X 10 mm. This tuning fork has the 
standard frequency of 440 Hz. The surface of the tuning fork is divided 
into 10,772 triangular constant elements (Fig. 13). An annulus field 
surface with an outer diameter of 1 m and an inner diameter of 0.04 m is 
used, the center of the annular surface is located on the main axis of the 
tuning fork. The field surface is further divided into 5,200 quadrilateral 
elements. The time interval is 0.0005 seconds, with a total of 2000 time 
steps performed, resulting in a total duration of 1 s. 

Figs. 14 and 15 respectively show the modal shape of the tuning fork 
and the velocity time response of the end of the tuning fork arm under 
the symmetry striking loading computed by Abaqus. 

The velocity computed by the FEM is projected onto the element 
normal direction as the boundary condition with known q, and the 
sound pressure of field points is computed by the KFL-BEM. Fig. 16 
shows contour plots of the acoustic velocity potential at different time 
and under different striking loads showed in Fig. 12. The two arms of the 
tuning fork are represented by two small rectangles. 

Through the contour plots of the sound field around the tuning fork, 
we observe that the sound radiation direction of the tuning fork varies 
with different striking loads, which aligns with the directional pattern 
obtained by Russell [30]. 

The time-varying pressure curves at the filed point (-0.489, 0.06, 
0.003) m of the KFL-BEM and the CBEM for the striking load in Fig. 12 
(a) are plotted in Fig. 17. 

The computation time for all time steps in the CBEM is 217,260 s, 
while that for the KFL-BEM it is 146,280 s. Performing an inverse Fourier 
transform on the data from Fig. 17 yields a vibration frequency of 447 
Hz, with a relative error of 1.59% compared to the vibration frequency 
of the tuning fork (at 440 Hz). The numerical errors in the acoustic- 
structure analysis are acceptable, indicating the effectiveness of using 
this method for time-domain acoustic-structure analysis in different 
scenarios. 

By increasing the number of time steps from 2,000 to 8,000, we 
obtain a set of results depicting the variation of sound pressure over time 
for the case of the folk under the symmetry strike and for a duration of 4 
seconds. Using these results, we can generate a ‘.wav’ file that allows us 
to directly listen to the sound produced after striking the tuning fork 
(this sound file is provided as a supplement file with this paper). 

5. Conclusions 

To improve the computational efficiency regarding the memory 
usage and computing time of the TDBEM for modeling 3D acoustic 
problems, we propose a kernel-function library time-domain BEM (KFL- 
BEM) in this paper. This method can effectively remedy the large 
memory consumption problem in the TDBEM, which can avoid the 
redundant computations of the same time differences at many different 
time steps. As a result, the memory consumption of time-domain 
acoustic BEM is reduced from O(N2Ntmin) to O(N2). Numerical verifi
cations of the KFL-BEM are provided, showing that the memory usage of 
the KFL-BEM can be pre-determined, independent of Ntmin, and is similar 
to the CBEM when it only stores coefficients for a single time step. 
However, the KFL-BEM exhibits higher computational efficiency 
compared to the CBEM in this context, as no coefficients need to be 
computed repeatedly. Computations of vibro-acoustic problems under 
transient loads often require smaller time intervals and more time steps 
to compute the responses. Consequently, the benefit in memory-saving 
of the KFL-BEM becomes even more relevant. As an example, a vibro- 
acoustic analysis using a tuning fork under different striking loads is 
conducted. Based on the computed data, one can directly hear the sound 
emitted by the vibrating fork using the time-domain BEM, which is 
intriguing and may find more interesting applications in different fields. 

Fig. 10. Boundary elements used for the channel model with N = 14400.  

Fig. 11. The sound velocity potential at the boundary point (-0.0083, 0.0083, 
0) m. 
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The advantages of the KFL-BEM in reducing memory usage can be 
extended to the BEM for solving other time-domain problems, such as 
transient elastodynamic and electromagnetic problems. Fast solution 
methods, such as the FMM, ACA and fast direct solvers, can also be 
implemented with the KFL-BEM to further improve the computational 
efficiencies in solving large-scale time-domain problems. 
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