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A B S T R A C T   

In this paper, a boundary element method (BEM) based on a new boundary integral equation (BIE) formulation is 
proposed for modeling wave propagation problems in functionally graded materials (FGM) in the frequency 
domain. The material properties of the considered FGMs are assumed to be graded along spatial Cartesian co
ordinates, and can vary continuously either in a single axis, or in multiple axes simultaneously, according to an 
exponential law distribution. Similar to the Somigliana’s identity, a new generalized Green’s identity corre
sponding to the elastodynamic equations for FGMs is established first, which can be used to derive the BIE for 
wave propagation in FGMs for either 2-D or 3-D models. For convenience, a special case with the static and 
isotropic fundamental solutions are adopted in applying the Green’s identity of FGMs. Finally, a boundary- 
domain integral equation with boundary-only solution scheme is derived. The BEM is applied to solve the BIE 
and quadratic elements are employed in the discretization. Several test problems in 2-D domains are studied 
using the BEM. The effects of the material gradient, gradation direction, as well as frequencies of the incident 
wave on the wave propagation in the FGMs are investigated intensively. The numerical results clearly show the 
effectiveness and efficiency of the developed BEM in modeling the wave propagation problems in FGMs.   

1. Introduction 

Functionally graded materials (FGMs) are a type of smart composite 
materials which contain two or more different constituents in a designed 
manner. The most special characteristics of the FGMs are their material 
properties can change continuously in a pre-defined manner. This leads 
to the FGMs to have a micro-nonhomogeneous and a macro-continuous 
property. The outstanding properties of the FGMs have made them to 
have many advantages in thermal, corrosion, wear resistant, high 
strength with low weight, and so on. Compared with the traditional 
composite materials where delamination cracks often occur between 
different layers, FGMs offer much better crack resistance and thus have 
gained widespread interests in many engineering fields (Mahamood and 
Akinlabi, 2017). 

In recent years, the research on FGMs is no longer limited to the basic 
static stress analysis. It has also been extended into other application 
fields. For example, FGMs have been used to design the coating to absorb 
the acoustic wave propagation; FGM multimode optical fibers have been 
used in communication fields, and FGM piezoelectric sensors have been 
developed with wide applications (Fengxiang et al., 2018). 

Research on the wave propagation in FGMs has also been conducted. 
A 1-D model for designing FGMs to manage stress waves was proposed 
by Bruck (2000). This model was initially applied to FGMs with discrete 
layering, then extended to continuously graded architectures. Bere
zovski et al. (2003) studied the propagation of stress wave propagation 
in FGMs numerically by means of the composite wave-propagation al
gorithm. Two distinct models of FGMs were considered, one was a 
multilayered metal-ceramic composite with averaged properties with 
layers, the other was randomly embedded ceramic particles in a metal 
matrix with prescribed volume fraction. A new higher-order spectral 
element was developed by Chakraborty et al. (Chakraborty and Gopa
lakrishnan, 2004) for wave propagation analysis of an FGM beam in the 
presence of the thermal and mechanical loading. The Young’s modulus 
and thermal expansion varied on the beam depth. Aksoy and Senocak 
(2009) analyzed the wave propagation in functionally graded and 
layered materials by using space-time discontinuous Galerkin method. 
The wave propagation and dynamic response of the rectangular FGM 
plates with completed clamped supports under impulse load were 
analyzed by Sun and Luo (2011). The effective material properties of 
FGMs for the plate were assumed to vary continuously through the plate 
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thickness and be distributed according to a volume fraction power law 
along the plate thickness. Numerical modeling of the lamb wave prop
agation in FGMs by a 2-D time-domain spectral finite element method 
(SpFEM) was presented by Hedayatrasa et al. (2014). The high-order 
Chebyshev polynomials as approximation functions were used, which 
provided the capability to take into account the through thickness 
variation of the material properties. Elastic wave propagation in FG 
circular cylinders were discretized by Dorduncu et al. (2015) by using 
the finite difference method. The cylinder material consists of metal and 
ceramic, and material properties varied through the thickness direction 
with a power-law distribution in terms of volume fractions of the con
stituents. A new model for wave propagation in FG anisotropic 
doubly-curved shells was devoted by Aminipour et al. (2018) in the 
framework of an accurate higher-order shear deformation theory. An 
exponential formula in combination with a trigonometric function were 
used for modeling the displacement field. All components of the elastic 
stiffness tensor and density were varied exponentially through the 
thickness direction. The one-dimensional propagation of longitudinal 
elastic waves along the thickness of a plate made of FGMs excited by a 
harmonic force was reported by Benarik et al. (Bednarik et al., 2018). 
The material properties of the plate were assumed smoothly connects 
the material properties of the upper and lower homogeneous materials 
that bounds the plate. The Incy-type equation was transformed to 
Heun’s equation a local exact solution of which was expressed in terms 
of local Heun functions. The study presented an improved mathematical 
model to analyze the stress wave propagation in adhesively bonded FG 
circular cylinders (butt joint) under an axial impulsive load was pro
posed by Dorduncu (Dorduncu et al., 2019). The volume fractions of the 
material constituents in the upper and lower cylinders were functionally 
tailored through the thickness of each cylinder using a power-law. In this 
improved model, the governing equations of the wave propagation 
include the spatial derivatives of local mechanical properties and were 
discretized by means of the finite difference method. An analysis of the 
propagation of wave FG plates was presented by Fourn et al. (2018) by 
using a high order hyperbolic shear deformation theory. Because the 
shear correction coefficient is not required, the theory has only four 
variables. The governing equations of the wave propagation in the FG 
plate were derived by employing the Hamilton’s principle. 

Due to the material inhomogeneity, a new challenge presents in the 
analysis of the wave propagation in FGMs. The traditional definition of 
the plane wave is no longer valid and the waves in such medium 

propagate with attenuation. The literature of wave propagation in 
nonhomogeneous materials is vast as shown in the above paragraph, 
where the waves are successfully described by wave modes, and their 
dispersive character. The propagation speed, attenuation constant, and 
pertinent angles are in general dependent on the frequency (Gopa
lakrishnan, 2016). However, most of the work covered the wave prop
agation problems in time domain. Meanwhile, the material properties 
investigated only vary in the thickness direction of the considered thin 
structures, with limited understanding of the physical behavior of the 
wave propagation in the inhomogeneous materials and in frequency 
domain. In the present work, the wave propagation in an FGM media is 
studied in the frequency domain, and the material properties vary along 
the spatial coordinates either in a single direction, or in multiple di
rections simultaneously, according to an exponential law distribution. 
The boundary integral equation (BIE) for frequency domain wave 
propagation in FGMs is developed by deriving a new generalized 
Green’s identity corresponding to the elastodynamic equations for 
FGMs. The boundary element method (BEM) is then applied to solve the 
BIE. 

This paper is organized as follows: In Section 2, the distribution of 
material properties for considered FGM is presented. In Section 3, a new 
Green’s identity and the BIE for wave propagation problems in the FGM 
are derived. In Section 4, the accuracy and the efficiency of the present 
method is verified by solving the wave propagation in homogeneous and 
FGM materials. In Section 5, the present method is applied to investigate 
the physical behaviors of wave propagation in several FGMs, and detail 
parametric study is conducted. The paper concludes with a summary in 
Section 6. 

2. Material properties of the FGM 

In this paper, a two-material FGM is considered in the 2-D case. An 
exponential law is used to simulate the Young’s modulus E and mass 
density ρ for the FGM as follows: 

E¼Eseðβx1þγx2Þ; where ​ ​ β¼
1
L1

ln
�

Ee

Es

�

; γ¼
1
L2

ln
�

Ee

Es

�

; (1a)  

ρ¼ ρse
ðξx1þηx2Þ; where ​ ​ ξ¼ 1

L1
ln
�

ρe

ρs

�

; η¼ 1
L2

ln
�

ρe

ρs

�

; (1b)  

where x1, x2 represent the Cartesian coordinates, respectively. L1 and L2 

Fig. 1. Material properties varying along special coordinates: (a) in x1 or x2 coordinate respectively; (b) in x1 and x2 simultaneously.  
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describe the length and height of the considered geometry in Cartesian 
coordinate. Es, Ee, ρs, ρe are the Young’s modulus and mass density for 
the starting and ending face respectively. β; γ; ξ; η indicate the material 
gradation parameters. The material properties of the FGM can vary from 
pure steel to pure aluminum and vice versa along x1 (γ ¼ 0; η ¼ 0) or 
x2 (β ¼ 0; ξ ¼ 0), respectively or simultaneously (β; γ; ξ; η 6¼ 0). 
Taking a metal/aluminum FGM as an example, the material properties 
varying along the spatial Cartesian coordinates are depicted in Fig. 1, 
where the material starting from steel and varying gradually to 
aluminum is denoted as SA, and conversely, the material varying 
gradually from aluminum to steel is denoted as AS. 

3. Boundary integral equation formulations 

A new generalized Green’s identity is derived first, that will be 
employed to establish the BIE for FGM wave propagation problems. 
Assume that the considered domain Ω has two states, and each state has 
a different type of functionally graded material. The Young’s modulus, 
Poisson’s ratio and mass density for these two FGMs are denoted by E, ν, 
ρ and E*, ν*, ρ*, respectively. The frequency domain wave propagation 
equilibrium and constitutive equations for these two states are listed 
below: 

Equilibrium : σij;j þ ω2ρui ¼ 0
Constitutive : σij ¼ μðxÞcijkluk;l

�

for FGM 1
�

E; ν; ρ）; (2a, b)  

Equilibrium : σ*
ij;j þ ω2ρ*u*

i ¼ 0

Constitutive : σ*
ij ¼ μ*ðxÞc*

ijklu
*
k;l

)

for FGM 2

 

E*; ν*; ρ*Þ; (3a, b)  

where ω indicates the circular frequency of the incident wave. The 
tensors σij, σ*

ij and vectors ui, u*
i are the stress and displacement com

ponents, respectively, for the two states. Functions μ(x) and μ*ðxÞ are the 
shear modulus of the FGMs which vary continuously along certain 
special coordinates. The scaled Young’s modulus tensors are cijkl ¼

2ν
1� 2νδijδkl þ δikδjl þ δilδjk and c*

ijkl ¼
2ν*

1� 2ν*δijδklþ δikδjlþ δilδjk, where ν and 
ν* are both assumed to be constant. 

This new Green’s identity can be derived by using the Gauss theorem 
as follows. First, evaluate the integral: 
Z

Ω
σij;ju*

i dΩ ¼
Z

Ω

�
σiju*

i

�

;jdΩ �
Z

Ω
σiju*

i;jdΩ ¼
Z

Γ

�
σiju*

i

�
njdΓ �

Z

Ω
σiju*

i;jdΩ

¼

Z

Γ
tiu*

i dΓ �
Z

Ω
σiju*

i;jdΩ ¼
Z

Γ
tiu*

i dΓ � I
;

(4)  

where nj is the component of the outward unit normal n to the boundary 
Г of the considered domain Ω, and the last term I in Eq. (4) is defined as: 

I�
Z

Ω
σiju*

i;jdΩ¼
Z

Ω

�
μðxÞcijkluk;l

�
u*

i;jdΩ: (5) 

If we assume ν ¼ ν*, then cijkl ¼ c*
ijkl. Thus, I in Eq. (5) can be eval

uated as: 

I �
Z

Ω
σiju*
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Z

Ω

�
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�
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h
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Z
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uidΩ

;

(6)  

in which κðxÞ ¼ μðxÞ
μ*ðxÞ. Then, substituting Eq. (6) into Eq. (4), the gener

alized Green’s identity for the FGM problem can be written as: 
Z

Ω
σij;ju*

i dΩ �
Z

Ω

h
κðxÞσ*

ij

i

;j
uidΩ¼

Z

Γ
tiu*

i dΓ �
Z

Γ
κðxÞt*i uidΓ; (7)  

which is similar to the Somigliana’s identity for elastostatic problems 
(Liu, 2009). Eq. (7) is the generalized Green’s identity for the FGM 
problems, which can be used to analyze elastodynamic problems of 
FGMs for either 2-D or 3-D models. However, at the present, the 
fundamental solution for FGMs are either not available or too compli
cated (Gao and Davies, 2011), which prohibits efficient numerical 
implementation and extension of the BEM to solving the dynamic FGM 
problems. To circumvent this difficulty, a special case of using the static 
and isotropic fundamental solution will be adopted in applying Eq. (7) 
for solving dynamic FGM problems. 

First, we take μ*ðxÞ ¼ μ0, where μ0 represents the shear modulus of 
the isotropic and homogenous material, then κðxÞ ¼ μðxÞ

μ0 
and identity in 

Eq. (7) becomes: 
Z

Ω
σij;ju*

i dΩ �
Z

Ω
κðxÞσ*

ij;juidΩ ¼
Z

Γ
tiu*

i dΓ �
Z

Γ
κðxÞt*i uidΓ þ

Z

Ω
κðxÞ;jσ*

ijuidΩ:

(8) 

In Eq. (8), let ui, ti, σij be the solution of the boundary-value problem 
that needs to be solved for the given FGM case, and u*

i , t*
i , σ*

ij be the 
fundamental solutions of the static linear elastic homogeneous material 
with shear modulus equal to 1. For 2-D, one has: 

u*
i ¼Uij¼

� 1
8πð1 � νÞ

�
ð3 � 4νÞδij lnðrÞ � r;ir;j

�
; (9)  

t*i ¼Tij¼
� 1

4πð1 � νÞr
��

1 � 2ν
��

nir;j � njr;i
�
þ
� �

1 � 2ν
�
δijþ 2r;ir;j

�
r;lnl
��
;

(10)  

σ*
jk;k ¼Σijk;kðx; yÞ; where Σijk;kðx; yÞþ δijδðx; yÞ¼ 0; 8x; y 2 R2=R3 (11)  

where ðÞ;k ¼ ∂ðÞ=∂yk, and r ¼ |x-y|, is the distance between the source 
point x and the field point y. The first index i in the fundamental solution 
indicates the direction of the unit concentrated force at the source point 
x. The Dirac δ function δ(x, y) represents the body force corresponding 
to the unit concentrated force applied at x. 

Substituting Eqs. (9)–(11) into identity (8) and applying Eq. (2a), the 
following representation integral of the displacement field in domain Ω 
can be obtained: 

buiðxÞ ¼
Z

Γ
Uijðx; yÞtjðyÞdΓ �

Z

Γ
Tijðx; yÞbujðyÞdΓ þ

Z

Ω
Vijðx; yÞbujðyÞdΩ

þω2
Z

Ω

ρðxÞ
κðxÞ

Uijðx; yÞbujðyÞdΩ
;

(12)  

in which, traction tj ¼ σjknk, the first domain integral is due to the in
homogeneity of the material, and the second domain integral represents 
the inertial effect. The new kernel function Vij is given by: 

Vij�
μ;k
μ Σijk ¼

�
� 1

4πð1 � νÞr
��

1 � 2ν
��
bμ;ir;j � bμ;jr;i

�
þ
� �

1 � 2ν
�
δijþ 2r;ir;j

�
r;lbμ;l

��
:

(13)  

And the normalized displacement and shear modulus are reformed as 

buiðxÞ¼ κðxÞuiðxÞ and bμðxÞ ¼ ln μðxÞ: (14a, b) 

Once the displacement ui and traction ti are obtained on the entire 
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boundary Г, the preceding integral expression can be used to evaluate 
the displacement at any point inside the domain Ω, if needed. Let the 
source point x approach boundary Г in Eq. (12), one obtains the 
following conventional BIE for the wave propagation problems in the 
FGM: 

cijðxÞbuiðxÞ ¼
Z

Γ
Uijðx; yÞtjðyÞdΓ �

Z

Γ
Tijðx; yÞbujðyÞdΓ þ

Z

Ω
Vijðx; yÞbujðyÞdΩ

þω2
Z

Ω

ρðxÞ
κðxÞ

Uijðx; yÞbujðyÞdΩ
;

(15)  

where the coefficients cij ¼ 1=2δij, if Г is smooth at source point x. 
Different method can be used to solve this conventional BIE for the 

dynamic FGM problem. In this work, the normalized displacements in 
the domain integrals in Eq. (15) are expressed by a combination of the 
fourth order spline-type radial basis function φA (Yang et al., 2014a; Gao 
et al., 2008) and the polynomials listed below with αA

j , ak
j and a0

j being 
the unknown coefficients: 

buiðyÞ ¼
X

A
αA

i ϕA þ ak
i yk þ a0

i ;
X

A
αA

i ¼ 0;
X

A
αA

i yA
j ¼ 0; (16a, b, c)  

where yk and yA
j are the coordinates of the field point y and the 

application point A respectively. The application points are composed 
by the boundary nodes and internal points. Substituting all the appli
cation points into Eq. (16), and if with no two coincide nodes, the 
unknow parameters can be calculated first (Yang et al., 2014b). Then, 
using the radial integral method (Gao, 2002), the domain integrals in Eq. 
(15) are transformed into boundary integrals as following and a BIE with 
only boundary integrals can be obtained. 
Z

Ω
Vijðx; yÞbujðyÞdΩ ¼ αA

j

Z

Γ

1
r

∂r
∂n

Vij

Z r

0
ϕAdrdΓ þ

ak
j

2

Z

Γ
rr;k

∂r
∂n

VijdΓ þ
�

ak
j xk

þ a0
j

�Z

Γ

∂r
∂n

VijdΓ;

(17)  

Table 1 
Material properties of each component.  

Materials E (GPa) ρ(kg/m3) ν 

Steel (S) 200 7800 0.3 
Aluminum (A) 70 2700 0.3  

Fig. 2. Models of wave propagation in homogeneous media (a) P-wave (b) SV-wave.  

Fig. 3. The BEM results of SV-wave for homogeneous material compared with the analytical results.  

Fig. 4. BEM models with (a) 20 BE 9 IN (b) 20 BE 81 IN.  
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Z

Ω

ρðxÞ
κðxÞ

Uijðx; yÞbujðyÞdΩ ¼
ρ0

μ2
0
αA

j

Z

Γ

1
r

∂r
∂n

Z r

0
rϕAUije½ðξ� βÞy1þðη� γÞy2 �drdΓ

þak
j

Z

Γ

r;k
r

∂r
∂n

Z r

0
r2Uije½ðξ� βÞy1þðη� γÞy2 �drdΓ

þ
�

ak
j xk þ a0

j

�Z

Γ

1
r

∂r
∂n

Z r

0
rUije½ðξ� βÞy1þðη� γÞy2 �drdΓ

:

(18) 

The BEM is applied to discretize this conventional BIE with quadratic 
boundary elements and internal nodes. The details of the implementa
tion on calculating the boundary integrals can be found in Refs. (Yang 
et al., 2015, 2016). After substituting the boundary conditions, and the 
incident wave condition, the wave propagation displacement can be 
obtained by solving the linear equations shown below: 
�
A � ω2P

�
fzg¼fbg; (19)  

where A and P are coefficient matrices, z vector contains all the un
known displacements and tractions at each node, and b is the known 
right-hand-side vector. By solving Eq. (19), all the unknown boundary 
variables on each element can be obtained. 

4. Numerical examples 

A steel/aluminum FGM is considered in this study, the material 
properties of each components are listed in Table 1. 

For all the analyses, the waves are introduced due to a harmonic 
initial displacement as UðxÞ ¼ u0eikx (x-direction) or VðxÞ ¼ v0eikx (y- 
direction). After solution, the obtained displacements are all normalized 
as: 

uðxÞ¼ u = u0 or vðxÞ¼ v = v0: (20)  

4.1. Verification of the present method 

4.1.1. Verification of the wave propagation in homogeneous materials 
The present method is first verified by analyzing the P-wave and SV- 

wave propagation in the homogenous media, and the models are 
depicted in Fig. 2. The length of each side of this domain is 0.2 m. 

It is found that the BEM solution with only 20 quadratic boundary 
elements (BE) and 9 internal nodes (IN) can already yield accurate re
sults compared with the analytical results with the form of uðxÞ ¼ u0eikx, 
where u0 is the constant coefficient of amplitude, k is the incident wave 
number and i ¼√-1 is the imaginary unit. For the incident wave fre
quency ranging from 20 Hz to 20000 Hz, comparisons of the BEM and 

Fig. 5. P-wave propagation in homogeneous material (a) Comparation normalized displacements with those of analytical solution; (b) displacement contour 
plots (20B81I). 
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analytical displacements are shown in Fig. 3, with the corresponding 
BEM model shown in Fig. 4 (a). 

Increasing the internal nodes can increase the accuracy of the results. 
The model with 20 boundary elements and 81 internal nodes (Fig. 4(b)) 
is used to calculate the normalized displacements of P-wave and SV- 
wave in the homogeneous material case, with the incident wave fre
quency ranging from 20 Hz to 20000 Hz. The BEM normalized dis
placements are compared with the analytical solution and their 
displacements contours are plotted in Figs. 5 and 6. It can be seen that 

the BEM results with 20 boundary elements and 81 internal nodes match 
well with those of the exact solutions. It can be concluded that, the BEM 
developed is effective and accurate in the homogeneous material case. 

4.1.2. Verification of the wave propagation in FGM 
Due to the frequency domain wave propagation in FGM is very 

limited in literature, the present results of frequency wave propagation 
in the FGM is compared with that of the finite element method (FEM), 
which is calculated by applying the commercial software ABAQUS. The 

Fig. 6. SV-wave propagation in homogeneous material (a) Comparation normalized displacements with those of analytical solution; (b) displacement contour 
plots (20B81I). 

Fig. 7. Models of the P- and SV- wave propagation in FGM.  
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model of the P- and SV-wave propagation is given in Fig. 7. The lengths 
of the considered rectangular domain of P- and SV-wave are 1 m and 
0.5 m, and the heights are all 0.2 m. In this stage, only one FGM case is 
used to verification. That is the materials of the FGM vary continuously 
from steel to aluminum in x1 direction, and which is named SAx1. 

The normalized displacements of the P-wave propagation in SAx1 
FGM computed by present BEM using 60 BE 273 IN and FEM using 2000 
quadratic elements are plotted in Fig. 8. It can be seen that, the BEM and 
FEM results matched well, except for the cases with f ¼ 13340 Hz. That 
is because when the incident wave frequency is f ¼ 13340 Hz, a 

Fig. 8. Comparison of the normalized displacements of P-wave in SAx1 FGM with those of the FEM.  

Fig. 9. Comparison of the normalized displacements of SV-wave in SAx1 FGM with those of the FEM.  

Fig. 10. Six cases of FGM models.  
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resonance of this considered structure is occurred. The displacements 
calculated by the FEM is almost two times of that of the present BEM at 
this frequency. 

The normalized displacements of the SV-wave propagation in SAx1 

FGM computed by the BEM using 70 BE 147 IN and the FEM using 1000 
quadratic elements are plotted in Fig. 9. A structural resonance is also 
occurred in f ¼ 11120 Hz. It can be shown that the results are compared 
very well at all frequencies in this case. 

Fig. 11. Normalized displacement of P-wave propagation in SAx1 and ASx1 FGM.  

Fig. 12. Normalized displacement of P-wave propagation in SAx2 and ASx2 FGM.  

Fig. 13. Normalized displacement of P wave propagation in SAx1x2 and ASx1x2 FGM.  
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4.2. Wave propagation in the FGM media 

In this section, the P-wave and SV-wave propagation in the FGM 
media is further investigated. Three different cases of different material 

gradation directions and two different material gradients are consid
ered. Namely, material gradation only in x1 direction, or only in x2 di
rection, or in x1 and x2 directions simultaneously; meanwhile, the 
material graduates from steel to aluminum or from aluminum to steel; 

Fig. 14. Normalized displacements of SV-wave propagation in SAx1 and ASx1 FGMs.  

Fig. 15. Normalized displacement of SV-wave propagation in SAx2 and ASx2 FGMs.  

Fig. 16. Normalized displacement of SV-wave propagation in SAx1x2 and ASx1x2 FGMs.  
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with a total number of six cases. For convenience, SAx1 is used to denote 
the case that material properties gradate from steel to aluminum in x1 
direction, and the same way to define SAx2, SAx1x2, ASx1, ASx2 and 
ASx1x2 (Fig. 10). 

4.2.1. P-wave propagation 
The considered model of P-wave propagating in FGM is described in 

this subsection and their results are presented in Figs. 11–13. 
Six cases of P-wave propagation in FGM are investigated. SAx1 and 

ASx1 wave propagation are presented in Fig. 11. For these two cases of P- 
wave propagation, the propagation direction is the same as the material 
gradation direction, and a phenomenon that the amplitude varies with the 
frequency is emerged. With decreasing material stiffness, the amplitudes 
are amplified; and inverse, stiffening the material properties, the ampli
tudes are attenuated. Meanwhile, the amplitude of variation is enhanced 
with the incident wave frequency increased. If the material gradient is 
normal to the wave propagation, less effect of the material gradient on the 
variation of the wave amplitude, which can be observed in Fig. 12, where 
SAx2 and ASx2 waves are plotted and they are almost the same. Material 
gradation in x1x2 are depicted in Fig. 13, where the material gradients 
affect the wave propagation much more. With high incident wave fre
quency, the amplitude variations are much more obviously, and the trend 
of variation is the same as that in the SAx1 and ASx1 cases. 

4.2.2. SV-wave propagation 
The SV-wave propagating in FGM model is described and the 

normalized displacements of the considered six cases of FGMs are 
plotted in Figs. 14–16. 

From Fig. 14, it can be seen that, although the nodes vibrate normal 
to the wave propagation direction, the wave propagation is in accor
dance with the material gradation, which still leads to the variation of 
the wave amplitudes. With the increase of the incident wave frequency, 
the SAx1 wave amplitudes increase, while the ASx1 wave attenuations 
amplify. 

When the node vibration direction is in accordance with the material 
gradation direction, or the SV-wave propagation is normal to the ma
terial gradation direction. It is observed from Fig. 15 that the wave 
displacements of SAx2 and ASx2 are the same, the amplitudes of the 
waves are not changed with the material gradation. From this result, it 
may be concluded that when the material gradients normal to the wave 
propagation direction, it will have less effect on the wave propagation. 

Finally, cases of the material gradating simultaneously in x1 and x2 
are considered for the SV-wave. There is still some variation of the 
material properties in the wave propagation direction, thus changes of 
the wave amplitudes of SAx1x2 and ASx1x2 are observed. Excepted for 
the resonant frequencies, the variation of the wave amplitude is almost 
relating to the variation of the material properties. 

From the above analyses of the wave propagation in FGM models, it 
can be concluded that whenever for P- or SV-wave, only two different 
cases should be considered: 1) when the wave propagates in the direc
tion of gradation; and 2) when the propagation is in the direction normal 
to the gradation direction. The first case gives rise to an inhomogeneous 
wave, where the wave amplitude varies while propagating, for which 
stiffening the material properties decreases the amplitude and 
decreasing the material stiffness increases the wave amplitude. This 
phenomenon is missing in the second case, which will be refer to as the 
homogeneous wave case. 

5. Conclusions 

A new boundary element method for modeling wave propagation in 

FGMs is proposed and verified using several 2-D FGM models. In this 
paper, there are three novelties as listed below: First, a generalized 
Green’s identity corresponding to the elastodynamic equations for FGMs 
is established by using the Gauss theorem. This new derived Green’s 
identity can be applied to solve elastodynamic problems of FGMs for 
either 2-D or 3-D models. Second, based on this Green’s identity, the BIE 
for FGM elastodynamic equations is derived analytically, which can be 
used to distinguish the BIE derived by using the weighted residual 
method. The last but not least, the present developed approach is used to 
model the wave propagation problems in FGM. 

The verification of the present BEM results with that of the analytical 
solution demonstrates that the BEM can provide numerical results with 
high efficiency and accuracy. A parametric study is conducted to 
investigate the effects of the material gradients, gradation direction, as 
well as incident wave frequencies on the wave propagation in the FGMs. 
It is concluded that, the amplitude of inhomogeneous wave varies while 
propagating and this phenomenon is missing in the homogeneous wave 
case. Increasing the stiffness of the materials can attenuate the waves 
and decreasing the stiffness of the materials can amplify the waves. The 
present BIE formulation can be used as the theoretical basis for the 
analysis of wave propagation in FGMs using both 2-D and 3-D models, 
and it also can be applied to analyze other elastodynamic FGM prob
lems, such as structure dynamic analysis. 
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