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a b s t r a c t 

A dual interpolation Galerkin boundary face method (DiGBFM) is applied in this paper by combining the newly 

developed dual interpolation method with the Galerkin boundary face method (BFM). The dual interpolation 

method unifies the conforming and nonconforming elements in the BFM implementation. It classifies the nodes 

of a conventional conforming element into virtual nodes and source nodes. Potentials and fluxes are interpolated 

using the continuous elements in the same way as conforming BFM, while boundary integral equations (BIEs) 

are collocated at source nodes, in the same way as nonconforming BFM. In order to arrive at a square linear 

system, we provide additional constraint equations, which are established by the moving least-squares (MLS) 

approximation, to condense the degrees of freedom relating to virtual nodes. Compared with the traditional 

symmetric Galerkin boundary element method (BEM), the symmetry feature of the DiGBFM equations is obtained 

simply through matrix manipulations, because of the use of the symmetric BEM, and no hypersingular BIE is 

needed in the DiGBFM. The proposed method has been implemented successfully for solving 2-D steady-state 

potential problems. Several numerical examples are presented in this paper to show the convergence and accuracy 

of this new method. 
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. Introduction 

The boundary integral equation (BIE) or boundary element method

BEM) [1–5] are now well-established numerical techniques for solving

omplicated engineering problems, such as fracture mechanics prob-

ems [6–11] , wave propagations problems [12] , dynamic crack prob-

ems [13,14] and frictional contact problems [15] . 

In many implementations of BEM, the Galerkin scheme is usually

pplied for symmetry of the matrix which can be used to reduce the

omputer effort for the Gaussian elimination operation [16] . The

ymmetric Galerkin BEM was first proposed by Sirtori [17] . One of

he main problems for Sirtori’s formulation is that one has to solve

he hypersingular integrals appeared [18] . L.J. Gray developed this

pproach to avoid the difficulties inherent with C 

1 interpolations

emanded by a collocation approximation for hypersingular equations

y employing non-conforming elements [19] . However, when using

on-conforming elements, internal collocation results in a physically

nappealing discontinuous interpolation [20] . In addition, very often

he traditional symmetric Galerkin BEM is used to solve difficult

roblems. Against this background, development of the nonconforming

ymmetric Galerkin BEM’s formulation is necessary. 

Recently, the first author and his group proposed a dual interpolation

oundary face method (DiBFM) [21–23] , which has the strong ability to
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mprove the accuracy of nonconforming elements in the BEM implemen-

ation. In this method, the BIE is discretized by the dual interpolation

lement which includes source nodes and virtual nodes. While only the

ource nodes of each dual interpolation element are taken as the collo-

ation points, that is to say, the BIEs are collocated at source nodes in

he same way as nonconforming boundary face method (BFM). In or-

er to make the linear equations system solvable, we provide additional

onstraint equations, which are established by the moving least-squares

MLS) approximation, to condense the degrees of freedom relating to

irtual nodes. Thus, for the same number of source nodes, the final co-

fficient matrix in the DiBFM is the same size as that in the traditional

EM, while the DiBFM can yield much higher computational accuracy. 

Besides, in the DiBFM, both boundary integration and MLS are di-

ectly performed on boundary faces, which are described as the form

f parametric spaces, and the form of parametric spaces is definitely

he same as the boundary representation (B-rep) data structure in ac-

ual solid modeling. That is, the geometric data, such as coordinates,

utward normal and Jacobians, are calculated directly from bounding

urves and bounding surfaces rather than from elements [24] and [25] .

hus, no geometric approximations are introduced in the DiBFM. How-

ver, there are two defects of BFM: (i) To obtain the parametric equa-

ions of complex models is time-consuming; (ii) The parametric equa-

ions need to be used repeatedly to obtain geometric information, the

iBFM requires much more computing effort than the BEM. However,
arch 2020 
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Fig. 1. Dual interpolation elements for 2D 

problems: (a) constant, (b) linear, and (c) 

quadratic. 
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i  
he DiBFM still gains higher efficiency for the same level of accuracy.

onsidering the advantages of the Galerkin BEM [18] in accuracy and

n dealing with symmetric matrices, it is natural to extend the Galerkin

EM approach to the dual interpolation BFM. 

In this paper, the dual interpolation method is combined with a

alerkin boundary face method (DiGBFM) for solving 2-D steady-state

otential problems. This paper extends the results from Ref. [22] . The

rimary contributions of this paper are as follows: In this new method,

i) the symmetry of the matrix is obtained simply through matrix ma-

ipulation, and no hypersingular BIE is employed [26] , therefore, this

ymmetric DiGBFM is easier to implement than the traditional symmet-

ic Galerkin BEM, and it can also reduce the computational cost; (ii) the

ay of DiGBFM to condense the degrees of freedom relating to virtual

odes is different from that of traditional DiBEM, if we rigidly follow

he formulations from Ref. [22] , the symmetry of the final coefficient

atrix cannot be obtained. 

The paper is organized as follows: In Section 2 , the dual interpola-

ion method for 2-D steady-state potential problems is introduced. In

ection 3 , the formulations of the DiGBFM are presented. In Section 4 ,

umerical examples are provided to demonstrate the convergence and

ccuracy of the proposed DiGBFM in solving 2-D potential problems. In

ection 5 , we conclude the paper with some discussions. 

. Dual interpolation method for steady-state potential problems 

It should be mentioned that most equations presented in this subsec-

ion can be found in the previous work but reproduced here for the sake

f completeness. 

.1. Dual interpolation element 

The elements in the DiBFM are called dual interpolation elements.

s is illustrated in Fig. 1 , the dual interpolation elements are divided

nto different element types. The nodes of a dual interpolation element

re classified into two groups: the source nodes (shown as solid red dots

n Fig. 1 ) and the virtual nodes (red circles in Fig. 1 ). Considering both

irtual and source nodes, the element is equivalent to a standard con-

inuous element. Ignoring virtual nodes, it becomes a conventional dis-

ontinuous element with a lower order. Thus, the dual interpolation el-

ments have capability on unifying the conforming and nonconforming

lements. Shape functions of the elements of type (a), (b), and (c) are

iven by: 

 

𝑠 
1 ( 𝜉) = (1 + 𝜉)(1 − 𝜉) and 

{ 

𝑁 

𝑣 
1 ( 𝜉) = 

1 
2 𝜉( 𝜉 − 1) 

𝑁 

𝑣 
2 ( 𝜉) = 

1 
2 𝜉( 𝜉 + 1) 

, (1)

 

𝑁 

𝑠 
1 ( 𝜉) = 

[ 𝜉−(1− 𝑑) ] ( 𝜉+1)( 𝜉−1) 
2 𝑑 (1− 𝑑 )(2− 𝑑 ) 

𝑁 

𝑠 
2 ( 𝜉) = − 

[ 𝜉+(1− 𝑑) ] ( 𝜉+1)( 𝜉−1) 
2 𝑑 (1− 𝑑 )(2− 𝑑 ) 

and 

{ 

𝑁 

𝑣 
1 ( 𝜉) = − 

[ 𝜉+(1− 𝑑) ] [ 𝜉−(1− 𝑑) ] ( 𝜉−1) 
2 𝑑 (2− 𝑑 ) 

𝑁 

𝑣 
2 ( 𝜉) = 

[ 𝜉+(1− 𝑑) ] [ 𝜉−(1− 𝑑) ] ( 𝜉+1) 
2 𝑑 (2− 𝑑 ) 

, (2)

 

 

 

 

 

𝑁 

𝑠 
1 ( 𝜉) = − 

[ 𝜉−(1− 𝑑) ] ( 𝜉+1)( 𝜉−1) 𝜉
2 𝑑 (2− 𝑑 ) (1− 𝑑 ) 2 

𝑁 

𝑠 
2 ( 𝜉) = 

[ 𝜉+(1− 𝑑) ] [ 𝜉−(1− 𝑑) ] ( 𝜉+1)( 𝜉−1) 
(1− 𝑑) 2 

𝑁 

𝑠 
3 ( 𝜉) = − 

[ 𝜉+(1− 𝑑) ] ( 𝜉+1)( 𝜉−1) 𝜉
2 𝑑 (2− 𝑑 ) (1− 𝑑 ) 2 

and 

{ 

𝑁 

𝑣 
1 ( 𝜉) = 

[ 𝜉+(1− 𝑑) ] [ 𝜉−(1− 𝑑) ] ( 𝜉−1) 𝜉
2 𝑑 (2− 𝑑 ) 

𝑁 

𝑣 
2 ( 𝜉) = 

[ 𝜉+(1− 𝑑) ] [ 𝜉−(1− 𝑑) ] ( 𝜉+1) 𝜉
2 𝑑 (2− 𝑑 ) 

, 

(3)

espectively, where 𝜉 represents the natural coordinates ranging from

1 to 1 on the element, and the distance d is taken to be 1 4 in this study.

hese Equations that are formed by Lagrangian interpolation formula-

ion are also available in Ref. [22] . 
158 
.2. First-layer interpolation 

For 2-D steady-state potential problems, the independent physical

ariables on the boundary are the unknown potential u and normal flux

 . These physical quantities are estimated by dual interpolation elements

first-layer interpolation): 

 ( 𝑥 1 , 𝑥 2 ) = 𝑢 ( 𝜉) = 

𝑛𝛼∑
𝛼=1 

𝑁 

𝑠 
𝛼
( 𝜉) 𝑢 ( 𝑄 

𝑠 
𝛼
) + 

𝑛𝛽∑
𝛽=1 

𝑁 

𝑣 
𝛽
( 𝜉) 𝑢 ( 𝑄 

𝑣 
𝛽
) , (4)

( 𝑥 1 , 𝑥 2 ) = 𝑞( 𝜉) = 

𝑛𝛼∑
𝛼=1 

𝑁 

𝑠 
𝛼
( 𝜉) 𝑞( 𝑄 

𝑠 
𝛼
) + 

𝑛𝛽∑
𝛽=1 

𝑁 

𝑣 
𝛽
( 𝜉) 𝑞( 𝑄 

𝑣 
𝛽
) , (5)

here n 𝛼 and n 𝛽 are the total number of source and virtual nodes of a

ual interpolation element, respectively. 𝑁 

𝑠 
𝛼
( 𝜉) , 𝑢 ( 𝑄 

𝑠 
𝛼
) and 𝑞( 𝑄 

𝑠 
𝛼
) are the

hape function, potential and normal flux estimated at the 𝛼th source

ode in the dual interpolation element, respectively. 𝑁 

𝑣 
𝛽
( 𝜉) , 𝑢 ( 𝑄 

𝑣 
𝛽
) and

( 𝑄 

𝑣 
𝛽
) are likewise the shape function, potential and flux evaluated at the

th virtual node, respectively. In this study, the virtual nodal parameters

 ( 𝑄 

𝑣 
𝛽
) and 𝑞( 𝑄 

𝑣 
𝛽
) are not independent physical quantities, we use the

econd-layer interpolation to determine their relations to the potential

 and normal flux q at the source nodes. 

.3. Second-layer interpolation 

The MLS approximation is applied for the second-layer interpolation,

hich is used to construct the relations between the source and virtual

odes. Additional constraint equations are required to condense the de-

rees of freedom at virtual nodes. The second-layer interpolations for

alues at the virtual nodes are expressed as: 

 ( 𝑄 

𝑣 
𝛽
) = 

𝑀 

𝛽∑
𝑚 =1 

𝜙𝑣𝑠 
𝑚 
( 𝜉𝑣 

𝛽
) 𝑢 ( 𝑄 

𝑠 
𝑚 ( 𝛽) ) , (6)

( 𝑄 

𝑣 
𝛽
) = 

𝑀 

𝛽∑
𝑚 =1 

𝜙𝑣𝑠 
𝑚 
( 𝜉𝑣 

𝛽
) 𝑞( 𝑄 

𝑠 
𝑚 ( 𝛽) ) , (7)

here M 

𝛽 denotes the total number of source nodes 𝑄 

𝑠 
𝑚 ( 𝛽) covered in

he influence domain of virtual node 𝑄 

𝑣 
𝛽
, 𝜙𝑣𝑠 

𝑚 
( 𝜉𝑣 

𝛽
) is the shape function

f the MLS approximation corresponding to source node 𝑄 

𝑠 
𝑚 

, 𝑢 ( 𝑄 

𝑠 
𝑚 ( 𝛽) )

nd 𝑞( 𝑄 

𝑠 
𝑚 ( 𝛽) ) are potential and flux of source node 𝑄 

𝑠 
𝑚 ( 𝛽) , and the 𝜉𝑣 

𝛽
is

he parametric coordinate of virtual node 𝑄 

𝑣 
𝛽
. The details of the inter-

olation functions in Eqs. (6) and (7) and the MLS approximation are

vailable in Ref. [22] , Ref. [27] , respectively. 

Substituting Eq. (6) into Eq. (4) yields the formulation for the poten-

ial: 

 ( 𝜉) = 

𝑛𝛼∑
𝛼=1 

𝑁 

𝑠 
𝛼
( 𝜉) 𝑢 ( 𝑄 

𝑠 
𝛼
) + 

𝑛𝛽∑
𝛽=1 

𝑀 

𝛽∑
𝑚 =1 

𝑁 

𝑣 
𝛽
( 𝜉) 𝜙𝑣𝑠 

𝑚 
( 𝜂𝑣 

𝛽
) 𝑢 ( 𝑄 

𝑠 
𝑚 ( 𝛽) ) = 

𝐾 ∑
𝑗=1 

𝑁 

𝑠 
𝑗 
( 𝜉) 𝑢 ( 𝑄 

𝑠 
𝑗 
) , 

(8) 

nd substituting Eq. (7) into Eq. (5) yields the formulation for the normal

ux: 

( 𝜉) = 

𝑛𝛼∑
𝛼=1 

𝑁 

𝑠 
𝛼
( 𝜉) 𝑞( 𝑄 

𝑠 
𝛼
) + 

𝑛𝛽∑
𝛽=1 

𝑀 

𝛽∑
𝑚 =1 

𝑁 

𝑣 
𝛽
( 𝜉) 𝜙𝑣𝑠 

𝑚 
( 𝜂𝑣 

𝛽
) 𝑞( 𝑄 

𝑠 
𝑚 ( 𝛽) ) = 

𝐾 ∑
𝑗=1 

𝑁 

𝑠 
𝑗 
( 𝜉) 𝑞( 𝑄 

𝑠 
𝑗 
) , 

(9) 

here K is equal to the sum of the number of source nodes 𝑄 

𝑠 
𝑚 ( 𝛽) covered

n the influence domain of virtual node 𝑄 

𝑣 
𝛽

and the number of the dual
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𝑠 
𝛼

minus the number of coincident

ource nodes. 

. DiGBFM 

.1. Discretization of the BIE for potential problems 

Consider the steady-state potential problem in an arbitrary 2-D fi-

ite domain Ω with the boundary Γ. The problem can be described in a

oundary integral equation form, the dis cretization form of the BIE for

 source point P can be written as: 

( 𝑃 ) 𝑢 ( 𝑃 ) = ∫Γ 𝑢 
∗ ( 𝑃 , 𝑄 ) 𝑞( 𝑄 ) 𝑑Γ( 𝑄 ) − ∫Γ 𝑞 

∗ ( 𝑃 , 𝑄 ) 𝑢 ( 𝑄 ) 𝑑Γ( 𝑄 ) , 𝑃 , 𝑄 ∈ Γ

(10) 

here the coefficient c(P) is defined as: 

( 𝑃 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 P in the internal domain 
1 
2 P on the smooth boundary 

0 P in the outer domain 

(11)

nd u ( Q ) denotes the potential and q ( Q ) denotes the flux at the boundary

oint Q on Γ, respectively. u ∗ ( P, Q ) is the fundamental solution, and

 

∗ ( P, Q ) is the normal derivative of u ∗ ( P, Q ). We have for 2-D potential

roblems: 

𝑢 ∗ ( 𝑃 , 𝑄 ) = − 

1 
2 𝜋

ln 𝑟 

 

∗ ( 𝑃 , 𝑄 ) = 

𝜕 𝑢 ∗ ( 𝑃 , 𝑄 ) 
𝜕𝑟 

𝑟 = |𝑃 − 𝑄 | (12) 

here r is the distance between the source node P and the field point Q .

Consider a set of discrete points Q j , j = 1,2…n on the boundary Γ. The

otential u ( Q ) and its flux q ( Q ) are approximated by functions 𝑁 

𝑠 
𝑗 
( 𝑄 ( 𝜉) ) :

 

 

 

 

 

 

 

𝑢 ( 𝑄 ( 𝜉) ) = 

𝑛 ∑
𝑗=1 

𝑁 

𝑠 
𝑗 
( 𝑄 ( 𝜉) ) 𝑢 ( 𝑄 

𝑠 
𝑗 
) 

𝑞( 𝑄 ( 𝜉) ) = 

𝑛 ∑
𝑗=1 

𝑁 

𝑠 
𝑗 
( 𝑄 ( 𝜉) ) 𝑞( 𝑄 

𝑠 
𝑗 
) 

(13) 

Substituting Eq. (13) into Eq. (10) leads to: 

( 𝑃 ) 𝑢 ( 𝑃 ) = 

𝑛 ∑
𝑗=1 

𝐺 𝑗 ( 𝑃 ) 𝑞( 𝑄 

𝑠 
𝑗 
) − 

𝑛 ∑
𝑗=1 

𝐻 𝑗 ( 𝑃 ) 𝑢 ( 𝑄 

𝑠 
𝑗 
) (14)

here 

𝐺 𝑗 ( 𝑃 ) = ∫Γ 𝑢 
∗ ( 𝑃 , 𝑄 ) 𝑁 

𝑠 
𝑗 
( 𝑄 ( 𝜉) ) 𝑑Γ( 𝑄 ) 

 𝑗 ( 𝑃 ) = ∫Γ 𝑞 
∗ ( 𝑃 , 𝑄 ) 𝑁 

𝑠 
𝑗 
( 𝑄 ( 𝜉) ) 𝑑Γ( 𝑄 ) (15) 

Applying the Galerkin method to Eq. (14) with respect to the bound-

ry nodes P i , one has: 

𝑛 

𝑗=1 
𝐶 𝐺𝑖𝑗 𝑢 ( 𝑄 

𝑠 
𝑗 
) = 

𝑛 ∑
𝑗=1 

𝐺 

𝑢𝑢 
𝐺𝑖𝑗 

𝑞( 𝑄 

𝑠 
𝑗 
)− 

𝑛 ∑
𝑗=1 

𝐺 

𝑞𝑢 

𝐺𝑖𝑗 
𝑢 ( 𝑄 

𝑠 
𝑗 
) (16) 

here the entries of the coefficients in Eq. (16) are defined as follows:

 

𝑢𝑢 
𝐺𝑖𝑗 

= ∫Γ 𝑁 

𝑠 
𝑖 
( 𝑃 ( 𝜉) ) 

[ 
∫Γ 𝑢 

∗ ( 𝑃 , 𝑄 ) 𝑁 

𝑠 
𝑗 
( 𝑄 ( 𝜉) ) 𝑑Γ( 𝑄 ) 

] 
𝑑Γ( 𝑃 ) (17)

 

𝑞𝑢 

𝐺𝑖𝑗 
= ∫Γ 𝑁 

𝑠 
𝑖 
( 𝑃 ( 𝜉) ) 

[ 
∫Γ 𝑞 

∗ ( 𝑃 , 𝑄 ) 𝑁 

𝑠 
𝑗 
( 𝑄 ( 𝜉) ) 𝑑Γ( 𝑄 ) 

] 
𝑑Γ( 𝑃 ) (18)

 𝐺𝑖𝑗 = 

1 
2 ∫ 𝑁 

𝑠 
𝑖 
( 𝑃 ( 𝜉) ) 𝑁 

𝑠 
𝑗 
( 𝑃 ( 𝜉) ) 𝑑Γ( 𝑃 ) (19)
Γ

159 
n which c ( P )is set equal to 1 2 for P lying on the boundary. Subscript ‘G’

xpresses the quantities related to the Galerkin method. 

To make the derivation procedure facilitative, Eq. (16) is written in

 matrix form as: 

 𝐺 𝐮 = 𝐆 𝐺 𝐪 (20)

n which H G contains terms in Eqs. (18) and (19) , while G G represents

he term in Eq. (17) . 

.2. Solution for potential problems 

To achieve symmetry, firstly multiplying Eq. (20) by G G and H G 
T 

espectively, one gets: 

 

𝐺𝐻 

𝐺 
𝐮 = 𝐃 

𝐺𝐺 
𝐺 

𝐪 (21)

nd 

 𝐃 

𝐺𝐻 

𝐺 
) 𝑇 𝐪 = 𝐃 

𝐻𝐻 

𝐺 
𝐮 (22)

here 𝐃 

𝐺𝐺 
𝐺 

= 𝐆 𝐺 𝐆 𝐺 , 𝐃 

𝐺𝐻 

𝐺 
= 𝐆 𝐺 𝐇 𝐺 , and 𝐃 

𝐻𝐻 

𝐺 
= 𝐇 

𝑇 
𝐺 
𝐇 𝐺 . 

It is obvious that both 𝐃 

𝐺𝐺 
𝐺 

and 𝐃 

𝐻𝐻 

𝐺 
are symmetric matrices. 

Afterward, Eq. (21) is adopted to all segments of the boundary Γ1 

ith prescribed potential, while Eq. (22) is adopted to all segments of

he boundary Γ2 with prescribed flux. Partitioning matrices 𝐃 

𝐺𝐺 
𝐺 

, 𝐃 

𝐺𝐻 

𝐺 

nd 𝐃 

𝐻𝐻 

𝐺 
with respect to boundaries Γ1 and Γ2 respectively, one can

et: 

𝐃 

𝐺𝐻 

𝐺11 , 𝐃 

𝐺𝐻 

𝐺12 
]{ 

𝐮 1 
𝐮 2 

} 

= 

[
𝐃 

𝐺𝐺 
𝐺11 , 𝐃 

𝐺𝐺 
𝐺12 

]{ 

𝐪 1 
𝐪 2 

} 

, (23) 

nd 

( 𝐃 

𝐺𝐻 

𝐺12 ) 
𝑇 
, ( 𝐃 

𝐺𝐻 

𝐺22 ) 
𝑇 
]{ 

𝐪 1 
𝐪 2 

} 

= 

[
𝐃 

𝐻𝐻 

𝐺21 , 𝐃 

𝐻𝐻 

𝐺22 
]{ 

𝐮 1 
𝐮 2 

} 

, (24) 

here subscripts ‘1’ and ‘2’express variables at boundary Γ1 and Γ2 re-

pectively. 

By moving the unknown physical variables to the left-hand side and

nown physical variables to the right-hand side, and then combing the

earranged Eqs. (23) and (24) , finally, a standard system of linear equa-

ions can be expressed as: 

 

𝐃 

𝐺𝐻 

𝐺11 𝐃 

𝐺𝐻 

𝐺12 
− 𝐃 

𝐻𝐻 

𝐺21 − 𝐃 

𝐻𝐻 

𝐺22 

] { 

𝐮 1 
𝐮 2 

} 

= 

[ 

𝐃 

𝐺𝐺 
𝐺11 𝐃 

𝐺𝐺 
𝐺12 

− ( 𝐃 

𝐺𝐻 

𝐺12 ) 
𝑇 − ( 𝐃 

𝐺𝐻 

𝐺22 ) 
𝑇 

] { 

𝐪 1 
𝐪 2 

} 

(25) 

hich is equivalent to: 

 

− 𝐃 

𝐺𝐺 
𝐺11 𝐃 

𝐺𝐻 

𝐺12 
( 𝐃 

𝐺𝐻 

𝐺12 ) 
𝑇 − 𝐃 

𝐻𝐻 

𝐺22 

] { 

𝐪 1 
𝐮 2 

} 

= 

[ 

− 𝐃 

𝐺𝐻 

𝐺11 𝐃 

𝐺𝐺 
𝐺12 

𝐃 

𝐻𝐻 

𝐺21 − ( 𝐃 

𝐺𝐻 

𝐺22 ) 
𝑇 

] { 

𝐮 1 
𝐪 2 

} 

(26) 

Eq. (25) can be expressed in a generic form: 

𝐱 = 𝐛 (27) 

here A is the coefficient matrix, x is the unknown vector, and b is the

ight-hand side vector in Eq. (26) . As both 𝐃 

𝐺𝐺 
𝐺 

and 𝐃 

𝐻𝐻 

𝐺 
are symmetric,

he left-hand side matrix in Eq. (26) , or A matrix in Eq. (27) , is symmet-

ic. We note that the symmetry is achieved here by simply using matrix

anipulations, without the need to apply the hypersingular BIE as in

he traditional Galerkin BEM. 

. Numerical examples and discussions 

In this section, we present four numerical examples to demonstrate

he accuracy and convergence of the proposed DiGBFM in solving 2-D

otential problems. 
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Fig. 2. Mixed problem on simple geometry: 

(a) geometric model and (b) boundary condi- 

tions. 

Fig. 3. Relative errors and convergence rates of u along all straight lines. 
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Fig. 4. Relative errors and convergence rates of q along the circle. 
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.1. Example 1 

We first consider a problem with mixed boundary conditions (BCs)

n a simple geometry. The size of the geometry is illustrated in Fig. 2 (a)

with length units in mm), which is a circle region with a center cut

ade of four straight lines. The analytical solution used in this problem

s given by: 

 ( 𝑥, 𝑦 ) = − 𝑥 4 − 𝑦 4 + 6 𝑥 2 𝑦 2 

The prescribed u and q values based on the above solution along all

oundaries are shown in Fig. 2 (b). The Dirichlet boundary condition on

he circle and Neumann boundary conditions on all inner straight edges

re imposed according to the above analytical solution. To study the

onvergence and accuracy of the proposed method, we employed five

ets of source nodes on all straight lines, n = 6, 12, 24, 36, and 48. The

umber of source nodes on the circle is six times more than the nodes

n any straight line. 

Figs. 3 and 4 show the relative errors for u on inner edges with Neu-

ann boundary conditions and q on outer edge with Dirichlet boundary

onditions, respectively, where GBFM is the regular Galerkin BFM. Com-

ined with the exact solution, the numerical results of u and q inside the

omain along the curve AB are shown in Figs. 5 and 6 , respectively. As

llustrated in Figs. 3 –6 , high accuracy and convergence rates for the

ixed problem with this relatively simple geometry can be achieved

sing the proposed DiGBFM. 
160 
The effect of the parameter d in Eqs. (2) and (3) on the computational

ccuracy of the proposed method has been studied in this example. The

bove five sets of source nodes are also used here. As shown in Figs.

 and 8 , for the same number of source nodes, the accuracy of the DiG-

FM will be slightly decreased with the increment of the parameter d . It

an be inferred that the best parameter d should be taken between 0.15

nd 0.2. 

.2. Example 2 

A complicated geometry, which consists of three identical leaf-like

egions equally spaced within a circle, is considered for the second ex-

mple. The dimensions of the geometry is shown in Fig. 9 . An analytical

olution for the 2-Dpotential problem is selected as: 

 ( 𝑥, 𝑦 ) = − 𝑥 3 − 𝑦 3 + 3 𝑥 2 𝑦 + 3 𝑥 𝑦 2 . 

Dirichlet boundary condition is imposed on all edges of the domain

n accordance with the above analytical solution. Fig. 10 shows the num-

er of source nodes on each edge. We employed five sets of source nodes

n interior circular edge, n = 6, 12, 24, 48, and 60. The number of source

odes on all interior edges is 7 n , and the number of source nodes on all

xterior edges is 30 n . 

Fig. 11 shows the relative errors and convergence rates of solved q

n the boundary. 
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Fig. 5. Values of u along the curve AB. 

Fig. 6. Values of q along the curve AB. 

Fig. 7. Effect of d on the accuracy of u along all straight lines. 

Fig. 8. Effect of d on the accuracy of q along the circle. 

Fig. 9. Dirichlet problem on complicated geometry (unit = mm). 

Fig. 10. The number of source nodes on each edge. 

161 
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Fig. 11. Relative errors and convergence rates of q on all edges. 

Fig. 12. Values of u along a circle of radius 1.25mm centered at the origin. 

Fig. 13. Values of q along the circle of radius 1.25mm centered at the origin. 

Table 1 

Number of elements and source nodes in example 4. 

DiGBFM FEM 

1 2 1 2 3 

Elements 304 634 742 1628 288050 

Source nodes 912 1902 1725 3635 581757 
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Figs. 12 and 13 show the numerical results of u and q as compared

ith the exact solution, respectively, which are inside the domain along

 circle (angle from 𝜋 to 0) of radius 1.25 mm, centered at the origin. 

Since the uncomforting quadratic elements were used in our pro-

osed method, it can achieve higher accuracy and faster convergence

ates for the cubic Dirichlet problem with a complicated geometry. 

.3. Example 3 

A fish-shaped geometry (see Fig. 14 ) is considered for the third ex-

mple. The analytical solution used is given by: 

 ( 𝑥, 𝑦 ) = 𝑥 2 − 𝑦 2 + 𝑥 − 𝑦. 

The prescribed u and q values along all boundaries are shown in

ig. 15 . Dirichlet boundary condition is imposed on all edges except for

dges of the diamonds according to the above analytical solution. 

Fig. 16 shows the number of source nodes on each edge. In this ex-

mple, there are five sets of source nodes on each interior edge, n = 4,

, 16, 24, 48. The number of source nodes on all exterior edges is 48

imes than the nodes on any of the interior edges. 

Figs. 17 and 18 show the relative errors and convergence rates of

 on the Neumann boundary conditions and q on Dirichlet boundary

onditions, respectively. 

Fig. 19 , shows the numerical results of the potential u along the cen-

er line AB shown in Fig. 14 . 

The results show that DiGBFM has high rates of convergence. The

greement between numerical and exact results is excellent. 

.4. Example 4 

A forth example is presented to show the accuracy and convergence

f the DiGBFM as compared with the FEM. In this example, the model

s a 10 × 10 square domain with many internal cavities (see Fig. 20 (a)),

nd with the prescribed u along all boundaries as shown in Fig. 20 (b). 

In the DiGBFM, the potentials and normal fluxes on the boundary are

pproximated by nonconforming quadratic dual interpolation elements,

hile these potentials and normal fluxes are approximated by quadratic

riangle elements in the FEM. Table 1 lists the number of elements and

ource nodes for the proposed DiGBFM and FEM. 

In the following figures for this example, the results of DiGBFM-912

nd DiGBFM-1902 are obtained by the proposed method using 912 and

902 source nodes, respectively. The FEM results with 1725, 3635 and

81757 source nodes are denoted by FEM-1725, FEM-3635 and FEM-

81757, respectively. The numerical results by the FEM with 581757

ource nodes are used as reference solution. 

The numerical results of the potential along a line (x = 5.0 mm) are

hown in Fig. 21 , and the potential distribution over the entire domain

s shown in Fig. 22 . From Fig. 21 , one can see that as the number of the

ource nodes increases, the numerical results of the potential calculated

y both methods approach to the reference solution. 

.5. Example 5 

The fifth example is a steady heat conduction problem on a real dam

odel (see Fig. 23 ). The bottom of the dam is 49 m. The left and right

ides of the real dam model are adjacent to the upstream and down-

tream, respectively. Besides, the upstream water level is 65 m. The

ther edges are exposed to air. 
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Fig. 14. Mixed problem with a fish shape geometry: 

geometric model. 

Fig. 15. Mixed problem with a fish shape geometry: 

boundary conditions. 

Fig. 16. The number of source nodes on each edge. 

Fig. 17. Relative errors and convergence rates of u on interior diamond edges. Fig. 18. Relative errors and convergence rates of q on other edges. 
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Fig. 19. Values of u along the line AB . 

Fig. 20. A mixed problem on a square domain with internal cavities: (a) geometry and (b) boundary conditions. 

Fig. 21. Values of potential u along the line x = 5mm. 
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Fig. 22. Potential distribution computed by: (a) DiGBFM with 1902 source nodes and (b) FEM with 581757 nodes. 

Fig. 23. Steady heat conduction problem on a dam: (a) geometry and (b) boundary conditions. 

Fig. 24. Temperature along the interface between the bed rock and the dam. 

 

l  

w  

t

𝑇

w

 

o  

s  

r  

i  

p

5

 

t  

o  

c  

B  

m  

165 
The edges of the bed rock are adiabatic except for the top and the

ocal temperature is 20.3 °C (see Fig. 23 ). Moreover, the temperature of

ater at the depth more than 50 meters is taken as 13.4 °C, while the

emperature of water within 50 m is given by: 

 = 20 . 3 − 0 . 138 × ℎ 

here h is the depth into the water. 

In the following figures for this example, the results of DiGBFM is

btained by the proposed method using 60 source nodes. The FEM re-

ults with 229, 1186 source nodes are denoted by FEM 229, FEM 1186,

espectively. The result obtained by the FEM with 165895 source nodes

s used as reference solution, which is denoted as RefSolution. The tem-

erature along the bottom of the dam is shown in Fig. 24 . 

. Conclusions 

In this paper, considering the broader application prospect of the

raditional symmetric Galerkin boundary element method in the field

f time domain potential problems and elastodynamic problems, by

ombining the dual interpolation method and the symmetric Galerkin

EM approach, a dual interpolation symmetric Galerkin boundary face

ethod (DiGBFM) is applied for solving 2-D steady-state potential prob-
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ems. The new method is a generalization of the Galerkin and the dual

nterpolation BFM and inherits the advantages from both of them. Com-

ared with the traditional symmetric Galerkin BEM, the DiGBFM can be

dopted to readily and accurately approximate both continuous and dis-

ontinuous fields and no need to use the hypersingular BIEs, therefore,

raditional symmetric Galerkin BEM is more difficult than DiGBFM. Nu-

erical examples with different geometries and type of boundary condi-

ions have been presented to demonstrate the convergence and accuracy

f the DiGBFM and verify the feasibility of combining the dual interpo-

ation method with the symmetric Galerkin BEM approach. 

Extensions of the DiGBFM to solving 3-D potential and elastostatic

roblems are possible, because of the advantages of DiGBFM: improve

he accuracy of the interpolation calculation and mitigate the ponderous

ask of mesh generation, it also has the potential to increase the accuracy

hen it is applied to elasticity or other difficult problems. By coupling

iGBFM with the fast multipole method, since no geometric errors are

ntroduced, a truly seamless interaction between CAD and CAE can be

chieved no matter how coarse the discretization is and DiGBFM may

e applied to solve large-scale problems with even more complicated

eometries. Work along this line is underway. 
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