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Abstract

The classical boundary element method (BEM) is widely used to obtain detailed information on the acoustic performance
f large-scale dynamical systems due to the nature of semi-analytical characteristic. Its use, however, results in asymmetric
nd dense system matrix, which makes original full-order model evaluation very time consuming and memory demanding.
oreover, the frequency sweep analysis which is indispensable for the assessment of noise emission levels and the design

f high-quality products requires the repetitive assembly and solution of system of equations, which further increases the
omputational complexity. In order to alleviate these problems, an adaptive structure-preserving model order reduction method
s presented, which is based on an offline–online solution framework. In the offline phase, we first factor out the frequency
erm as a scalar function from the BE integral kernels of the Burton–Miller formulation, followed by integration to set up the
ystem matrices. A global frequency-independent orthonormal basis is then constructed via the second-order Arnoldi (SOAR)
ethod to span a projection subspace, onto which the frequency-decoupled system matrices are projected column by column to

olve the memory problem arising from the frequency-related decomposition. In addition, the number of iterations required for
onvergence can be automatically determined by exploiting the condition number of an upper Hessenberg matrix in SOAR. In
he online stage, a reliable reduced-order model can be quickly recovered by the sum of those offline stored reduced matrices

ultiplied by frequency-dependent coefficients, which is favored in many-query applications. Two academic benchmarks and
more realistic problem are investigated in order to demonstrate the potentials of the proposed approach.

c 2020 Elsevier B.V. All rights reserved.

eywords: Boundary element method; Adaptive model order reduction; Burton–Miller formulation; Second-order Arnoldi; Frequency sweep

1. Introduction

Over the past years, the acoustic qualities of dynamical systems have become an important design criterion
n many industrial sectors, for instance, high-speed trains, automobiles, aircraft fuselages, etc. Therefore, fast and
fficient modeling of acoustic fields is highly desirable for the noise control and low-noise design. Among the
arious computational methods, the finite element method (FEM) [1] and boundary element method (BEM) [2] are
f special interest to facilitate numerical simulations of structural acoustic problems. Compared with the FEM, the
EM might be preferable to handle three-dimensional (3D) exterior acoustic computations because of its inherent
dvantages such as decreasing the dimension of involved problems from 3D to 2D and satisfying the far-field
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boundary condition (BC) exactly. One of the weaknesses in the conventional BEM for exterior acoustic problems
is the existence of non-unique solutions. The combined Helmholtz integral equation formulation (CHIEF) has been
proposed to avoid this difficulty [3]. However, there are no analytical rules to guide how to choose the number
and position of interior points for the derivation of the over-determined system of equations. The Burton–Miller
boundary integral equation (BIE) formulation [4] is another way to deal with this problem and has proven to be
more rigorous and popular [5,6].

In addition, the coefficient matrix of BEM is fully populated and nonsymmetric, which leads to excessive memory
sage and calculation time. The fast multipole boundary element method [7,8] which is based on the separation of
eld and source points in the Green’s function has been proposed to improve the efficiency of solving large-scale
roblems. For acoustic modal analysis with BEM, the dual and multiple reciprocity method [9,10], contour integral
ethod [11] and resolvent sampling based Rayleigh–Ritz method [12] have been employed to compute the related

onlinear eigenvalue problem. In practice, the frequency spectra of excitation generally have a broad frequency
and and thus multi-frequency analysis is often required. Because of the frequency-dependent property, both the
raditional BEM and fast multipole BEM have to be applied to intensively recalculate all the entries in the system

atrices and then resolve it at multiple frequencies. As a result, the direct system-level simulation of the original
E model over a wide frequency range is extremely prohibitive. Therefore, there is a strong need for efficient
omputational approaches, capable of predicting the acoustic radiation and scattering properties of increasingly
omplex systems at low cost.

A logical strategy to overcome the drawback is to eliminate the frequency dependency, which has been explored
y using various forms of expansions of the kernels [13–15], including but not limited to the Taylor series. Such an
pproach reduces the integration effort for assembling the coefficient matrix, while the memory problem becomes
owever more serious. This is a common trade-off between the computational speed and memory consumption. The
mpirical interpolation method can also be used to decouple the frequency from the Green’s function as reported
n [16] for parameter-dependent cases.

Another alternative way to circumvent the difficulty incurred by acoustic frequency sweeps is to use model order
eduction (MOR) methods, which attempt to construct a low-order approximation of the original system to reduce
he overall computational burden of numerical simulations. Though extensive literature exists on MOR methods,
owever, the dimension reduction of BE models has received less attention than that of FE models [17]. The main
hallenges in reducing BE systems are two-fold: (1) how to construct an orthonormal basis and (2) how to avoid the
ssembly of system matrices for each frequency before projection. Some frequency interpolation techniques such as
he padé approximant have been used to extrapolate the acoustic transfer functions of BE models between a number
f selected master frequencies [18–20]. The proper orthogonal decomposition (POD) technique can be applied to
inear as well as nonlinear systems, thus it can naturally be used to speed up the solution of BE models [21,22].
n these approaches, the quality of approximation heavily depends on the selection of samples (e.g. through the
se of greedy algorithm [23]), and also multiple high-fidelity evaluations for snapshots (or master frequencies) are
ecessary, which are undesirable in many practical applications. Reduction of the dimension of system of equations
omes down to identify a proper projection subspace onto which the full-order model (FOM) can be projected to
stablish a compact reduced-order model (ROM). A family of the most effective methods in the moment matching
esearch community is based on the construction of the Krylov subspace [24–26]. Such an iterative approach which
akes the advantages of simplicity, availability and fast convergence has been used for reduced-order modeling of BE
ystems [21,27]. All of the aforementioned methods proposed in the literature can be directly applied to construct an
rthonormal basis for BE models without any difficulty, which responds the first challenge. However, the projection
tep is rather troublesome because it requires first forming the underlying FOM at each new value of the frequency,
hen projecting this model onto the reduced-order basis. This way, the ROM constructed for capturing the dynamic
ehavior of original FOM is updated successively as frequency varies, which is less favorable.

Following the first author’s previous work for dimension reduction of FE dynamical systems with frequency-
ependent damping [28,29], we first introduce a transformation based on Taylor’s theorem to treat the frequency-
ependent Green’s function. After that, MOR techniques can be applied to the frequency-decoupled system matrices
o ease the computational complexity. This idea enjoys the combination of both strengths of the series expansions
nd the MOR methods, which recently has been adopted in [30] to find a representative basis for BE systems with
he CHIEF method. In this work, a completely distinct and superior model reduction approach which is based on
he second-order Arnoldi (SOAR) algorithm [31] is developed for dimension reduction of large-scale BE models
ith the Burton–Miller formulation to remove the fictitious eigenfrequency difficulty.
2
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Since obtaining better approximation and smaller model size are the goals in the model reduction process, an
mportant open question is how to determine the order of a reduced model with satisfactory accuracy for practical
se, preferably in an adaptive manner. The strategies proposed in the literature for FE models are often based
n the relative input/output residual [23,24,32] or the difference between two reduced-order models [24,33–35] to
stimate the true error such that the evaluation of the FOM can be avoided. Considering computational resource
imitations, application of these adaptive strategies is not a big problem for sparse FE matrices, but for dense BE

atrices, numerical difficulties arise. This is because the system matrices need to be explicitly assembled and stored.
eanwhile, it also implies that multiple projections of the FOM onto different low-dimensional subspaces and

olution of the different reduced models are necessary to compare and check each other’s accuracy until a prescribed
hreshold is satisfied, as conducted in [30]. Obviously, the frequent comparisons are quite expensive. Therefore, it
s preferred that the number of moments matched between the BE FOM and its low-order approximation can be
etermined before the model reduction process starts not as the model reduction evolves.

To achieve this, an adaptive scheme which is based on the condition number of an upper Hessenberg matrix is
ncorporated into the SOAR process to automatically determine the desired low order. This provides a simple yet
owerful tool for engineering many-query applications, such as evaluation of a BE model many times for multi-
requency analyses. We refer to the proposed procedure for the construction of frequency-independent approximation
asis as the Adaptive Taylor-based SOAR (AT-SOAR) approach [29] from now on. At the end of the offline phase,
column-by-column projection is performed without even forming the system matrices explicitly and the resulting

educed matrices/vectors are stored for the subsequent fast frequency sweep analysis. In the online stage, one only
eeds to do straightforward algebraic manipulation on the ROM with a significantly smaller system size, thereby
esulting in far less computational cost. To show the benefits of the AT-SOAR approach from both memory and
omputation time viewpoints, two academic benchmark models with different BCs and a more complex one are
aken into account through the study of their acoustic scattering features.

The remainder of the paper is organized as follows. In Section 2, the Burton–Miller formulation as well as the
election of the coupling parameter is introduced. In Section 3, we show a procedure based on Taylor’s theorem and
he SOAR algorithm to generate an orthonormal basis for reduced-order modeling of BE systems, where different
Cs are reformulated. In Section 4, the proposed adaptive scheme and column-by-column projection are elaborated.
umerical verification cases and detailed discussions are highlighted in Section 5. Conclusions and future work are
resented in Section 6.

. Burton–Miller BIE formulation

The governing equation for steady-state linear acoustics in a bounded or unbounded 3D acoustic domain Ω can
be expressed by the Helmholtz equation:

∇
2 p(x) + k2 p(x) = 0, ∀x ∈ Ω (1)

where ∇
2 denotes the Laplacian operator; p(x) is the sound pressure; k = 2π f/c is the wavenumber which is

directly related to the speed of sound c in the medium and the frequency f in Hz.
On the acoustic problem boundary (∂Ω = Γ ), the following quantities may be prescribed

Neumann BC ∀x ∈ Γv : q(x) =
∂p(x)
∂n(x)

= jρωv̄n(x),

Dirichlet BC ∀x ∈ Γp : p(x) = p̄(x),
Γ = Γv ∪ Γp (2)

here q(x) is the normal derivative of sound pressure at point x and n is the normal of the boundary; v̄n(x) and
p̄(x) are the imposed normal velocity and sound pressure; ρ is the mass density of the medium; j is the imaginary
nit. For exterior acoustic problems, the Sommerfeld radiation condition at infinity must be met

lim
R→∞

[
R

⏐⏐⏐⏐ ∂p
∂ R

− jkp
⏐⏐⏐⏐] = 0, (3)

where R is the distance from the origin. Throughout this work, the harmonic time factor e−jωt is assumed.
By means of the second Green’s identity and the Dirac function property, the transformation of Eq. (1) into the

conventional boundary integral equation (CBIE) can be derived as [8]

C(x)p(x) =

∫
[G(x, y)q(y) − H (x, y)p(y)] dΓ (y) + pI(x), (4)
Γ

3
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in which C(x) = 1/2 if the source point x ∈ R3 is located on a smooth boundary surface Γ ; y ∈ R3 indicates
the field point; pI(x) denotes the background incident pressure field for scattering problems and it is non-existent
for radiation problems; G(x, y) is known as the free-space Green’s function. For 3D acoustic wave problems, it is
given by

G(x, y) =
ejkr

4πr
, (5)

where r is the distance between x and y, i.e. r = |x − y| and the normal derivative of the fundamental solution is
denoted by

H (x, y) =
∂G(x, y)
∂n(y)

=
ejkr

4πr2 (jkr − 1)
∂r

∂n(y)
. (6)

It is well-known that the CBIE in Eq. (4) gives non-unique solutions for exterior acoustic problems at a set of
ctitious eigenfrequencies [3]. A common way to fix this issue is to use the Burton–Miller BIE formulation [4,8],
hich is a linear combination of the CBIE and its normal derivative with respect to the vector n(x) at the surface
oint x ∈ Γ . In this way, the corresponding hypersingular boundary integral equation (HBIE) can be written as

C(x)q(x) =

∫
Γ

[E(x, y)q(y) − F(x, y)p(y)] dΓ (y) + q I(x), (7)

here q I(x) is the normal derivative of the incident wave field pI(x). The two new kernels can be expressed as

E(x, y) =
ejkr

4πr2 (1 − jkr )
∂r

∂n(x)
, (8)

F(x, y) =
ejkr

4πr3

[
(1 − jkr )ni (x)ni (y) + (k2r2

+ 3jkr − 3)
∂r

∂n(x)
∂r

∂n(y)

]
, (9)

here ni being the Cartesian components of the normal n(x) or n(y). By dividing the boundary Γ using surface
lements with nodes, the discretization of Eqs. (4) and (7) results in the following matrix form as:

[H + βF]p = [G + βE]q + bI, (10)

here bI is related to the (known) incident wave; p and q are respectively the vectors of sound pressure and its
ormal derivative. More details concerning this Burton–Miller matrix formulation and its explicit expressions can
e referred to the review article [6] and monograph [8]. β is the coupling parameter and should be a complex
umber with Im(β) ̸= 0. Usually, β = j/k is suggested [36,37] due to the fact that the G, H and E, F in Eq. (10)
ave different order about wavenumber k. In this work, β = jh is selected, where h is a typical element size in the
urface mesh. The reasons, on the one hand, are because of the rule of thumb, which implies that the influence of
he wavenumber k (or the frequency f ) is correlated with the mesh size. On the other hand, it is because that this
hoice of the coupling parameter yields BE matrices with better conditioning and more stable results [6].

The Burton–Miller approach, however, endures two major disadvantages; the integral operation for each pair
f elements is doubled and, even worse, the evaluation of the hypersingular integral is required. Some methods
ave been suggested to handle the hypersingular integral [38–41]. In this study, the constant triangular elements are
pplied, which makes the evaluation of singular and hypersingular integrals in Eqs. (4) and (7) can be performed
nalytically. However, the following solution framework is independent of the basis function used. That is to say,
he proposed approach can also be readily applied to BE systems modeled using other basis functions [42,43],
.g. Lagrangian bases with different orders, NURBS, T-splines and even others.

By applying the BCs in Eq. (2) and rearranging (the unknown and known) terms in Eq. (10) lead to the following
inear system of equations

Āz = b, (11)

here Ā ∈ CN×N is the coefficient matrix which is fully populated, asymmetric and frequency-dependent; z ∈ CN

nd b ∈ CN are the unknown and known nodal vectors, respectively. N is the number of degrees of freedom (DOFs)
n the BE model. Once z is obtained by using a direct or iterative solver, together with the specified BCs, Eqs. (4)
nd (7) with C(x) = 1 can be used to calculate the sound pressure p and normal velocity vn of any point within
he domain Ω , or more generally, the acoustic system output can be given by

T
y = L z, (12)

4
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where L ∈ CN is usually an output measurement vector to calculate any variable of interest from the BE solution
vector (e.g. sound power, sound intensity, etc.). In this work, it is only used to pick certain DOFs. The superscript
T designates the transpose operation.

3. MOR for BEM via T-SOAR procedure

It is obvious that the conventional BEM requires O(N 2) operations to calculate the coefficients and O(N 3)
operations to solve Eq. (11) if a direct solver is employed. In addition, the size of required memory for storing
Ā is also proportional to O(N 2). For multi-frequency acoustic analyses, Eq. (11) needs to be repeatedly formed
and solved across the frequency range of interest, which limits the application of traditional BEM in solving large-
scale acoustic problems. This fact motivates the use of model order reduction techniques, which aims at reducing
the system dimensions (and the associated computational effort and storage) while still capturing key dynamical
behavior and preserving essential properties of the original large-scale model.

3.1. Frequency decoupling

However, the difficulty in applying MOR schemes to acoustic BE systems is that their coefficient matrix has a
frequency-dependent property. For the purpose of model reduction the system matrices and projection operators are
expected to be irrespective of the frequency. Therefore, one must take out of the wavenumber from the exponential
function in the fundamental solution (and its normal and partial derivatives) such that frequency-independent
integrands in Eqs. (4) and (7) can be realized. Luckily, as this dependence is typically affine, it is possible to
use Taylor’s theorem about a fixed expansion point k◦ to fulfill this decomposition

ejkr
= ejk◦r

∞∑
m=0

(jr )m(k − k◦)m

m!
. (13)

In order to comply with the actual physical meaning, the choice of a purely real number for k◦ is suggested. In
practice, the infinite order series should be truncated to a finite order, which introduces the approximation error. If
we apply Taylor expansion with M +1 terms (i.e. from order 0 to order M), the error bound based on the Lagrange
remainder over a boundary element ∆Γ can be practically defined as:

δ =

∫
∆Γ

[jr (k − k◦)]M+1

(M + 1)!
ejk̂r dΓ ≤

⏐⏐⏐⏐ [rd(k − k◦)]M+1

(M + 1)!
Smax

⏐⏐⏐⏐ < ε (14)

n which k̂ ∈ (k◦, k); rd is the largest distance between the field point and source point, which is determined by
he topological shape of underlying structure; Smax is the maximum area of surface element; ε is the user-specified
olerance. This empirical error bound can be used in advance to estimate the suitable number of expansion terms
equired for a desired level of accuracy.

If the considered frequency range is too wide or the size of structures is too large, which leads to many terms
f Taylor series to accurately represent the kernels. In these cases, the entire broadband frequency range of interest
an be divided into several frequency subintervals. Within each interval, a single-point expansion around its middle
requency is applied and then the following MOR technique can be used to accelerate the numerical simulation
ithout any limitation, as detailed in the proceeding section.

.2. Reformulation

Depending on the boundary conditions, the CBIE in Eq. (4) and HBIE in Eq. (7) along with Eq. (10) are
eorganized for the sake of clarity.

.2.1. Neumann boundary condition
Substituting Eq. (13) into Eq. (10) and according to the order of k, the system of equations can be reformulated

n an equivalent form as[
M∑ (k − k⋆)m

m!
(k2Mm + kDm + Km)

]
p = bv, (15)
m=0

5
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where

Mm =

∫
Γ

(jr )m
[
β

ejk⋆r

4πr
∂r

∂n(x)
∂r

∂n(y)

]
dΓ , Dm = −jrKm = −Km+1,

Km =

∫
Γ

(jr )m
[
β

ejk⋆r

4πr3 (ni (x)ni (y) − 3
∂r

∂n(x)
∂r

∂n(y)
) −

ejk⋆r

4πr2

∂r
∂n(y)

]
dΓ .

(16)

Note the difference between k◦ and k⋆, where k◦ is a single expansion point used to approximate the kernels over
he considered frequency range, while k⋆ represent three expansion points used to construct a global orthonormal
asis, as given below. In addition, in Eq. (15), (k − k⋆)m/m! instead of (k − k⋆)m are extracted from integrands such
hat the values in the frequency-decoupled system matrices are roughly consistent without rounding error. These
xpressions can be readily obtained by means of the H (x, y) and F(x, y) kernels. Furthermore, the relationship
etween Km+1 and Dm can be used to save the computational time and memory consumption. The right hand
ide bv of Eq. (15) can be similarly obtained. For example, a special case is the acoustically rigid BC, where the
rescribed value for normal velocity v̄n is zero. In this case, we have bv = bI.

With the frequency decoupling technique, the frequency-dependent system matrices in Eq. (10) are now
ecomposed into the sum of frequency-dependent scalar functions multiplied by frequency-independent system
atrices Mm , Dm and Km . In obvious, the integral calculations of them need to be carried out only once and the

ubsequent frequency sweep process can thus be expedited. However, this technique quickly becomes intractable
s the size of involved model grows. This is because these dense frequency-independent system matrices have to
e stored and then used simultaneously in the online matrix assembly of the whole BE system for each frequency,
here the required storage scales with O((2M + 3)N 2).
A remedy to cope with the arising memory problem is to use MOR techniques in such a way that a low-

imensional subspace (spanned by an orthonormal basis) is constructed to define a reduced-order model. The
esulting surrogate model with a much smaller size should contain sufficient information about the essential
ynamics of original BE system and meanwhile hold the same form as formulated in Eq. (15). Different
pproaches differ in how the orthonormal basis is constructed. Since the Helmholtz equation is a second-order
inear partial differential equation, in this work, the moment-matching method based on the efficient second-order
rnoldi procedure [31] is applied. To this end, only the system matrices corresponding to the selected expansion
oint k⋆ in the series expanded Eq. (15) is used to implement the SOAR algorithm to iteratively generate a
requency-independent orthonormal basis. To be more specific, we have the following

[k2Mv + kDv + Kv]p = bv. (17)

The integration expressions of matrices Mv, Dv and Kv can be easily obtained from Eq. (16) by setting m = 0,
.e. Mv = M0, Dv = D0 and Kv = K0. One would wonder why the system matrices around the expansion point can
e used to construct an orthonormal basis with sufficient accuracy for projection. The reason is because entries in
ifferent Mm or Dm or Km differ by only one coefficient jr . Therefore, the system matrices Mv, Dv and Kv without
ore derivative matrices in fact maintain inherent information about the original system of equations. Before the
OAR algorithm is presented in detail to improve the computational efficiency, we show how to obtain another
ystem with the same second-order structure as in Eq. (17) for a 3D Helmholtz problem under pressure boundary
ondition.

.2.2. Dirichlet boundary condition
Analogously, making use of Eq. (13) and rearranging the G(x, y) and E(x, y) kernels with respect to the order

f wavenumber k yield[
M∑

m=0

(k − k⋆)m

m!
(kVm + Wm)

]
q = bp, (18)

here

Vm =

∫
Γ

(jr )m
[
−jβ

ejk⋆r

4πr
∂r

∂n(x)

]
dΓ ,

Wm =

∫
(jr )m

[
ejk⋆r

2 (r + β
∂r

)
]

dΓ .

(19)
Γ 4πr ∂n(x)
6
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In a similar fashion, the right hand side bp of Eq. (18) can also be obtained. A special case is the sound soft BC
with zero value for prescribed pressure p̄ on a subject surface. In this case, one has bp = −bI. For this problem,
the memory required by the series expansion is O(2(M + 1)N 2).

Eq. (18) is obviously different from the one for velocity BC as given in Eq. (15). When m = 0, a linear dynamical
ystem is of the form

[kV0 + W0] q = bp. (20)

Then the standard (linear) Krylov subspace-based methods for moment-matching reduced order modeling of
arge-scale linear systems can be applied, where the orthonormal basis can be constructed via the Arnoldi or Lanczos
teration process [24–26]. In this work, instead of using the linear system, we construct a second-order system as in
q. (17) to unify the model reduction process for BE systems with different BCs. That is to say, the well-developed
OAR algorithm can also be directly exploited for computational efficiency. To do this, the two kernels G(x, y) and

E(x, y) around a fixed expansion point k⋆ is approximated by linearization

G(x, y) =
ejkr

4πr
≈

ejk⋆r

4πr
(1 − jk⋆r + jkr ),

E(x, y) =
ejkr

4πr2 (1 − jkr )
∂r

∂n(x)
≈

ejk⋆r

4πr2 (1 − jk⋆r − k⋆kr2
+ k2r2)

∂r
∂n(x)

.

(21)

Then the system of equations subjected to the Dirichlet BC can be easily derived as[
k2Mp + kDp + Kp

]
q = bp, (22)

here

Mp =

∫
Γ

[
ejk⋆r

4π
β

∂r
∂n(x)

]
dΓ , Dp =

∫
Γ

[
ejk⋆r

4π
(j − βk⋆

∂r
∂n(x)

)
]

dΓ ,

Kp =

∫
Γ

[
ejk⋆r

4πr2 (1 − jk⋆r )(r + β
∂r

∂n(x)
)
]

dΓ .

(23)

r equivalently, one can also represent the system matrices as

Mp = V1, Dp = V0 − k⋆V1 + W1, Kp = W0 − k⋆W1. (24)

Since the second-order system of equations for the construction of reduction basis have been prepared, the basic
oncept of the SOAR algorithm and its straightforward implementation will be introduced in the following.

.3. SOAR procedure

Eqs. (17) and (22) can be expressed in a unified way as[
k2M∗ + kD∗ + K∗

]
z = b∗, (25)

ith the subscript ∗ = v for the Neumann boundary case and ∗ = p for the Dirichlet boundary case. z (= p or
) indicates the unknown node vector as defined in Eq. (11). It should be underlined that Eq. (25) is only used to
onstruct a frequency-independent orthonormal basis such that both Eqs. (15) and (18) can be projected onto the
panned subspace.

By replacing k with the wavenumber-shifted variable k − k⋆, Eq. (25) can be rewritten as[
(k − k⋆)2M̃ + (k − k⋆)D̃ + K̃

]
z = b∗. (26)

Comparing the coefficients between Eqs. (25) and (26) results in

M̃ = M∗, D̃ = 2k⋆M∗ + D∗, K̃ = k2
⋆M∗ + k⋆D∗ + K∗. (27)

It has been found that the second-order Arnoldi algorithm offers an elegant way to generate a desired reduction
asis Q⋆ with r0 ̸= 0 for large-scale second-order dynamical systems:

span{Q } = G (A, B; r ) = span{r , r , r , . . . , r } (28)
⋆ n⋆ 0 0 1 2 n⋆−1

7
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Fig. 1. The three selected expansion points and their desired convergence radius.

here{
r1 = Ar0,

rι = Arι−1 + Brι−2, for ι ≥ 2
(29)

nd the sequence r0, r1, r2, . . . , rn⋆−1 is called a second-order Krylov sequence based on a pair of matrices
= −K̃−1D̃ and B = −K̃−1M̃ and a starting vector r0 = K̃−1b∗, where the modified Gram–Schmidt process

is used to orthogonalize them and check the linear dependence. Such a subspace Gn⋆ (A, B; r0) is called an n⋆th
econd-order Krylov subspace since the vector rι is obtained by a linear homogeneous recurrence relation of degree

[31]. Q⋆ ∈ CN×n⋆ denotes the orthonormal and frequency-independent basis matrix, which is composed of n⋆

umber of nonzero column vectors. In most cases, it holds that n⋆ ≪ N . The processing time for calculating the
nverse of matrix K̃ and subsequent matrix–vector multiplications can be accelerated using an LU factorization.

. Adaptive procedure, projection and online solution

Before we proceed to the use of the second-order Krylov subspace as the projection subspace to define a
imension reduced system, we discuss how to construct a reliable global orthonormal basis in an automatic way.

.1. Determination of the expansion point and its associated order

For frequency sweep analysis of BE problems, one hopes that the response of the constructed ROM is sufficiently
lose to that of the original FOM. Under this condition, the following should be satisfied.

|y − ŷn|

|y|
≤

|y − ŷ|

|y|
+

|ŷ − ŷn|

|y|
< ε (30)

n which y and ŷ describe the input–output behavior of the original BE system without and with the Taylor series
xpansion of the Green’s function, respectively; ŷn is the transfer function obtained from the ROM.

As described in Eq. (30), there are two main contributions in the overall approximation error. One is the truncation
rror in decoupling the frequency, which can be evaluated by Eq. (14). The second error is the reduction error in the
lassical sense, which originates from projecting the frequency-decoupled FOM onto a low-dimensional subspace. In
eneral, a knowledge of the second exact relative error is difficult to achieve a priori . Recall from the Introduction
hat an error indicator based on the input/output residual or difference between two ROMs is not appropriate for
ense BE system matrices.

In the SOAR procedure, increasing the number of basis vectors for a fixed expansion point is much less expensive
han starting a new expansion point which suffers from the necessity of the inverse of matrix K̃. Therefore, a very
imited number of expansion points is expected to economize the offline construction of an orthonormal basis.
n addition, a single-point expansion is often not enough to capture dynamical characteristics of the FOM in the
requency range away from the chosen point due to the local approximation property of Taylor’s theorem. Therefore,
n this work, three expansion points are discretely deployed around klef = (3kmin + kmax)/4, kmid = (kmin + kmax)/2
nd krig = (kmin + 3kmax)/4, where kmin = 2π fmin/c and kmax = 2π fmax/c are the wavenumbers associated
ith the frequencies located at the left and right endpoints of the considered frequency band, as shown in Fig. 1.
he above-mentioned subscript ⋆ (= lef/mid/rig) indicates that variables are related to the left, middle and right
xpansion points from here onward. Then, according to Eq. (14), the truncated order of Taylor series expansion M̂
8
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for separately valid frequency interval (i.e. [kmin, kmid], [klef, krig], [kmid, kmax] or slightly wider) can be decided. It
is noted that M̂ is the same owing to the uniform frequency spacing. This provides a fair opportunity for each of
the expansion points to converge within their own radius of accuracy. After that, the success of an adaptive scheme
just depends on the number of orthonormal basis vectors to be calculated for each k⋆.

The next important step is to specify the order of orthonormal basis corresponding to klef, kmid and krig. The
calar transfer function y of Eq. (12) is a rational function. An intuitive way to generate a representation of y is to
se Taylor’s theorem [25], which leads to a power series form as

y = LTĀ−1b =

∞∑
ℓ=0

(k − k⋆)ℓyℓ, (31)

here yℓ for ℓ ≥ 0 are called moments about k⋆. It should be mentioned here that since the computation cost of
is relatively low, we use a direct solution as in the conventional BEM to obtain it for calculation accuracy. Note

hat Ā is approximated by the series expansion and truncated as

Ā =

M̂∑
m=0

(k − k⋆)mĀm, (32)

here Ām is a set of frequency-independent polynomial matrix [44]. Substituting Eq. (32) into Eq. (11) and
ultiplying Eq. (11) with A−1

0 from the left side, the transfer function of the frequency-decoupled system can
e cast into the form

ŷ = LT[I −

M̂∑
m=1

(k − k⋆)m(−Ā−1
0 Ām)]−1Ā−1

0 b =

∞∑
ℓ=0

(k − k⋆)ℓ ŷℓ. (33)

The error between y and ŷ can be estimated as mentioned before, i.e. y − ŷ = O((k − k⋆)M̂ ) with Peano form of
he remainder. Accordingly, the ℓ for ŷ in Eq. (33) can be truncated to M̂ , i.e. to match the first M̂ + 1 moments of
y. The objectives of a moment-matching MOR method are to construct a reduced system whose moments match the

oments of the original large-scale system as much as possible and meanwhile to preserve (to the possible extent)
ts important properties and physical meaning. Since we only use the (second-order) system matrices around the
elected expansion point to construct an orthonormal basis, the expansion of its transfer function as in Eq. (33) will
esult in a maximum order of 2M̂ (which can be roughly regarded as an extension of 1/(1 − x) = 1 + x + x2

+ · · ·

rom number to matrix). According to Ref. [45], if the SOAR procedure manually stops at the (2M̂)th step, then
he transfer function ŷn of the reduced model is an (2M̂ + 1)th Padé-type approximant of the transfer function of
he nonsymmetric second-order system in Eq. (25). Therefore, in what follows, we set the supremum of order for
ach expansion point to 2M̂ . In fact, this setting is not so important because it will be truncated (prematurely) by
he following (condition number) criterion.

It has been noticed that the SOAR algorithm will stagnate in accuracy when a certain value of order is reached. In
his case, it is impractical to approximate the FOM better by using more orthonormal projection vectors in the slow
onvergence range. This is due to the fact that the condition number of the triangular matrix in the SOAR algorithm
sually grows quickly, which leads to numerical instability [46]. This phenomenon together with the pre-specified
ermination tolerance ε can be utilized to automatically select the dimension of the reduced system.

Algorithm 1 describes the pseudocode of the proposed AT-SOAR procedure. Through application of the SOAR
lgorithm with j steps, j + 1 columns of orthonormal vectors spanning the second-order Krylov subspace
j+1(A, B; r0) are generated. Note that at line 4 of the algorithm, the supremum of order for each expansion point

s 2M̂ , as explained above. At line 20, lub/ε denotes the set upper bound on the condition number of the upper
essenberg matrix T̂, which is also relevant to the accuracy threshold ε. Unless otherwise stated, the default value

ub = 1e3 is used as the stopping criterion for each expansion point k⋆. This adaptive strategy is favored for
arge-scale problems because of its quite simple and straightforward implementation without resort to the FOM and
omparison of different ROMs.

As the three expansion points have their own local reduction basis, an orthogonalization procedure should be

pplied to combine them into a union of reduction bases generated from multiple second-order Krylov subspaces.

9
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m

Algorithm 1 Adaptive SOAR procedure
Input: A, B, r0; Output: Q⋆ for selected k⋆ with ⋆ being [lef, mid, rig]

1: preallocate Q = zeros(N , 2M̂ + 1), T̂ = zeros(2M̂ + 1, 2M̂ + 1)
2: q1 = r0/∥r0∥2
3: f = 0
4: for j = 1, 2, · · · , 2M̂ do
5: r = Aq j + Bf
6: for i = 1, 2, · · · , j do
7: ti j = qH

i r
8: r = r − qi ti j

9: end for
10: t j+1, j = ∥r∥2
11: if t j+1, j ̸= 0 then
12: q j+1 = r/t j+1, j

13: f = Q j T̂(2 : j + 1, 1 : j)−1e j

14: else
15: reset t j+1, j = 1
16: q j+1 = 0
17: f = Q j T̂(2 : j + 1, 1 : j)−1e j

18: save f and check breakdown
19: end if
20: if cond(T̂(1 : j, 1 : j), 1) > lub/ε then
21: break
22: end if
23: end for
24: Q⋆ = Q j+1

Notations: ∥ • ∥2 represents 2-norm of a vector or matrix, cond(•, 1) returns the 1-norm condition number of a
atrix, e j is the j th column of the identity matrix I, 0 denotes a zero vector or matrix, T̂ is an upper Hessenberg

matrix.

In this way, a global orthonormal basis matrix with multi-point moment-matching properties can be achieved as

Q = orth([Qlef, Qmid, Qrig]), Gnlef ∪ Gnmid ∪ Gnrig = span{Q}. (34)

So far, the global orthonormal basis Q ∈ CN×n used for projection has been established, where n is the order of
the final reduced model (or DOFs of the ROM). Next, dynamical systems described by Eqs. (15) and (18) are to
be projected onto the spanned low-dimensional subspace over the whole frequency range of interest.

4.2. Column by column projection

First, the system matrices around the middle expansion point k◦ = kmid has already been formed for the purpose
of constructing a reduction basis, thus part of the ROM with m = 0 for the Neumann BC or with m = 0 and 1 for
the Dirichlet BC can be readily built via projection. Then a complete ROM can be obtained by using a congruence
transformation on those remaining frequency-independent series representations.

However, this is not really a memory-efficient solution process as the dense system matrices need to be explicitly
formed. Storing these matrices requires O((2M + 1)N 2) entries for the Neumann BC and O(2(M − 1)N 2) for the
Dirichlet BC, which may quickly exceed the available memory. Note that the relation between Km+1 and Dm in
Eq. (16) is used such that the storage of O((2M + 1)N 2) rather than O(3M N 2) is given. Therefore, a memory
saving column-by-column projection is applied. In other words, once one column in the BE frequency-decoupled
matrices is assembled for one field point and all the source points, a left-sided projection is immediately implemented

until all the field points are computed. In this way, the required storage for the Neumann BC is reduced from

10



X. Xie and Y.J. Liu Computer Methods in Applied Mechanics and Engineering 373 (2021) 113532

i
f
m
t

s

O((2M + 1)N 2) to O((2M + 1)nN ), followed by a right-sided projection for the resulting matrices, the memory
usage is further reduced to O((2M + 1)n2). With regard to the Dirichlet BC, the memory requirement is also
decreased from O(2(M − 1)N 2) to O(2(M − 1)nN ) and further to O(2(M − 1)n2) via the MOR technique. As a
by-product, the projection step via the congruence transformations can potentially yield better conditioned systems
as multiplying with an orthonormal matrix on both sides of the system matrices can be viewed as preconditioning.

It should be admitted here that as any typical acoustic scattering problem, the right-hand side of system of
equations depends on the wavenumber. To this effect, the forcing vector, e.g. a plane incident wave bI, has to be
projected in the frequency sweep stage, which undermines the online computational efficiency. However, this impact
is small and can thus be negligible.

Algorithm 2 Offline projection for the Neumann BC

1: M0nn = QHMvQ, D0nn = QHDvQ, K0nn = QHKvQ
2: for j = 1, 2, · · · , N do
3: for i = 1, 2, · · · , N do
4: if i ̸= j then
5: numerical Gaussian quadrature of the kernels
6: else
7: analytical integration of the kernels
8: end if
9: end for

10: for m = 1, 2, · · · , M do
11: mmnj = QHmm N , kmnj = QHkm N

12: end for
13: k(M+1)nj = QHk(M+1)N

14: end for
15: for m = 1, 2, · · · , M do
16: Mmnn = MmnN Q, Kmnn = KmnN Q
17: end for
18: K(M+1)nn = K(M+1)nN Q
Notations: •

H designates the Hermitian transpose, lower case letters such as m denote a column of vector and
capital letters such as M denote a matrix. In the if-loop (lines 4-8), different e.g. mm differ by only the coefficient
jr , thus vectorization operation can be used to avoid for-loop.

Since forming the system matrices explicitly is no longer necessary, a fast and low-memory projection for the
mplementation of the proposed AT-SOAR technique can be accomplished. A summary of the projection procedure
or different BCs is respectively presented in Algorithms 2 and 3, where the diagonal ingredients of the system
atrices are obtained by using the analytical integration [47]. It should be emphasized that the transformed matrix

riplet (M̃, D̃, K̃) in Eq. (27) is used to generate the global frequency-independent orthonormal basis Q of the
projection subspace Gn , but the original matrices and vectors in Eqs. (15) and (18) are directly projected onto the
ame subspace Gn without loss of generality.

4.3. Online multi-frequency analysis

In the online frequency sweep phase, we need to compute the frequency-dependent coefficients in Eqs. (15)
and (18) for each frequency and then a robust ROM can be rapidly created from the offline stored reduced
matrices/vectors. Then a built-in solver in Matlab (i.e. backslash) is used to solve the reduced system of equations.
In this way, the required CPU time is predictable and it only relies on the dimension of the ROM, thereby reducing
the computational complexity dramatically compared to the brute direct solution of the high-dimensional original
model. In addition, through application of the structure-preserving dimension reduction technique, the form of
frequency-decoupled system of equations in Eqs. (15) and (18) is preserved.

In conclusion, the proposed AT-SOAR approach falls into the offline–online reduced-order modeling framework.
In the offline phase, the second-order Krylov subspace as the projection subspace with a much smaller dimension
11
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Algorithm 3 Offline projection for the Dirichlet BC

1: M0nn = QHMpQ, D0nn = QHDpQ, K0nn = QHKpQ
2: for j = 1, 2, · · · , N do
3: for i = 1, 2, · · · , N do
4: if i ̸= j then
5: numerical Gaussian quadrature of the kernels
6: else
7: analytical integration of the kernels
8: end if
9: end for

10: for m = 2, 3, · · · , M do
11: vmnj = QHvm N , wmnj = QHwm N

12: end for
13: end for
14: for m = 2, 3, · · · , M do
15: Vmnn = VmnN Q, Wmnn = WmnN Q
16: end for
Notations: with Eq. (24), the entire reduced frequency-decoupled system matrices can be obtained via the
ombination of line 1 and line 15.

than the full-order problem, is spanned by a set of orthonormal vectors, which is recursively obtained via the
SOAR algorithm. As a support, an adaptive scheme is incorporated into the framework to advance the present
technique. Once the reduction basis is constructed, a column-by-column projection is further sought to favor the
overall memory requirements. In the online phase, fast frequency sweep analysis with significant acceleration can
be achieved because it does not involve any costly dense matrix operation.

5. Numerical results and discussion

In this section, we present three numerical cases to demonstrate the high performance of the AT-SOAR solution
rocedure for solving large-scale acoustic BE systems. All our codes are implemented in Matlab R2019a. All
umerical tests are performed on a Windows Machine with Intel(R) Xeon(R) Gold 6132 CPU at 2.60 GHz and 64
B of RAM.
For the first two academic examples, the medium of acoustic field is assumed to be air whose mass density

nd speed of sound are respectively taken as ρ = 1.29 kg/m3 and c = 343 m/s. As the last more complicated
application, the scatterer is surrounded by an infinite domain of water with a density of 1000 kg/m3 and speed of
sound of 1500 m/s.

5.1. Scattering from a rigid sphere

The first example is a classical benchmark model, which comprises a rigid sphere with radius R = 1 m submerged
in air, as shown in Fig. 2. This sphere is impinged upon by a plane incident wave with unit amplitude along the
global positive x-direction, i.e. pI(x) = ejkx . The analytical solution for the total sound pressure is available [48],
which is the sum of the incident (pI) and scattered (pS) acoustic waves with a series of spherical harmonics

p(r, θ) =

∞∑
l=0

jl(2l + 1) jl(kr )Pl(cosθ ) −

∞∑
l=0

jl(2l + 1)
j ′

l (k R)
h′

l(k R)
hl(kr )Pl(cos θ ), (35)

here j ′

l and h′

l are the derivatives of spherical Bessel function jl and Hankel function hl , respectively; Pl is the
egendre polynomial of order l; r is the distance from the sphere center; the angle θ is defined such that the shadow

one is located at θ = 0.

12
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Fig. 2. (a) Plane wave scattered by a sphere and (b) its BE mesh.

Fig. 3. Condition number of T̂ with respect to the number of order: (a) case 1 with ε = 0.01; (b) case 2 with ε = 0.1.

The surface of sphere is meshed with 2700 constant triangular elements, which results in a BE dynamical system
f order N = 2700. The exterior-field total sound pressure responses |p(r, θ)| for the following two cases are
imulated from fmin = 1 Hz to fmax = 1000 Hz with frequency step of 1 Hz:

case 1: at the point (r = 2R, θ = π/2) with prescribed threshold ε = 0.01;
case 2: at the point (r = 5R, θ = π ) with prescribed threshold ε = 0.1.
In this example, the largest distance rd as defined in Eq. (14) is the diameter of sphere, i.e. rd = 2 m. According

o the derived error bound, the maximum expansion terms M = 46 for case 1 and M = 43 for case 2 around the
elected k◦ (= kmid) are sufficient for obtaining reliable solution within the considered frequency range.

In order to construct a proper projection subspace, Algorithm 1 is adopted, where three expansion points,
.e. [klef, kmid, krig] = 2π × [250, 500, 750]/c are designated to perform the SOAR algorithm. The associated

aximum order 2M̂ of reduction basis corresponding to each k⋆ is also controlled by Eq. (14), which leads to
M̂ = 42 for case 1 and 2M̂ = 36 for case 2.

Fig. 3 shows the variation of the condition number of the upper Hessenberg matrix T̂ with respect to the number
f reduced order. It is obvious that the condition number quickly grows from 1 to the set maximum allowed value
(105) (= lub/ε) for case 1 and to O(104) for case 2, which verifies the premise of the adaptive process. Note

hat in Algorithm 1 looping j times will get j + 1 columns of orthonormal basis vectors since the first vector r0 is
given before iteration. Specifically, for case 1, the orthonormal basis with order n = 82 is obtained under a certain
olerance ε = 0.01, which consists of nlef = 18 for expansion point klef, nmid = 23 for kmid and nrig = 41 for
rig. From Fig. 3(a), it clearly indicates that as the frequency f (or wavenumber k) increases larger dimensions are
equired to enrich the projection subspace. A similar trend is observed for case 2 from Fig. 3(b), where the order
= 61 of the final reduced model is the sum of n = 12 for k , n = 21 for k and n = 28 for k . This
lef lef mid mid rig rig

13
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Fig. 4. Sound pressure responses and relative error between the FOM and ROM: (a) case 1 at (r = 2R, θ = π/2) with ε = 0.01; (b) case
2 at (r = 5R, θ = π ) with ε = 0.1.

is due to the fact that more modal information is included in the higher frequency range, where more orthonormal
vectors are subsequently required to capture the crucial dynamical characteristics of the original system.

Fig. 4 depicts the comparison of the obtained results between the original system of order N = 2700 and the
educed-order systems of order n = 82 for case 1 and n = 61 for case 2, together with the analytical solution
btained from Eq. (35) which serves as a reference. It can be intuitively seen that the BEM with the Burton–Miller
ormulation does not show any irregular modes, and the results are in agreement with the analytical solutions,
hich confirms the validity of the choice of β = jh. In addition, the true relative error between the FOM and
OM is respectively shown at the second plot of Figs. 4(a) and 4(b), in which the blue dashed line indicates the set

ermination tolerance of ε. It is clear that the true relative error is less than ε over a wide frequency range, which
mplies that the dimension of ROM required for convergence can be automatically determined via the proposed
daptive process. It also suggests that the use of condition number of the upper Hessenberg matrix T̂ as an indicator
s a good and cheap stopping criterion, which allows one to avoid excessive and wasteful iterations.

The elapsed time for obtaining the frequency response of the BE FOM is around 17.2 h. The total CPU time
f the proposed AT-SOAR approach for case 1 is about 10 min, of which the processing time for the offline-phase
nd online-phase accounts for 95.7% and 4.3%, respectively. Excellent speedups over the brute force approach –
f the order of 103 – are achieved, meanwhile keeping the relative error below 1% in the entire frequency range of
nterest. For case 2, the computing time of the present approach is 9 min. Therefore, the computational efficiency
f frequency sweep analysis for BE models is significantly improved via the MOR technique.

With the obtained ROM, the sound field characteristics at any other field point in the exterior domain can be
valuated. For example, the directivity pattern of the (real and imaginary parts of) scattered pressure pS is plotted
n Fig. 5(a) at a radial distance of 10 m with azimuthal angle from 0 to 360◦ in the xy-plane, under a frequency
f 200 Hz. Fig. 5(b) shows a polar plot of the scattered quantity at the points along a circle of radius 5 m with a
requency of 800 Hz. It is obvious that the present results obtained from the ROM are in excellent agreement with
he analytical solutions. In addition, the scattering pattern becomes complicated as frequency increases.

.2. Scattering from a soft sphere

The main objectives of this numerical case are to validate the proposed AT-SOAR technique for BE systems
ith the Dirichlet BC and to evaluate the results obtained from the present approach and the first-order Arnoldi-
ased (FOAR) process, which generates n number of column orthonormal vectors of the standard Krylov subspace
n(C, r0) [24,25]. A basic algorithm template is given in the Appendix, from which it is clear that the classical
rylov subspace-based method is a special case of the SOAR algorithm without the second-order term.
This example is equal to the previous one except that the plane wave propagating in the +x direction is scattered
by a soft sphere with zero surface pressure. The analytical solution for the total sound pressure at any field point

14
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Fig. 5. Scattering directivity patterns versus the polar angle: (a) along a circle of radius 10 m at f = 200 Hz and (b) along a circle of
radius 5 m at f = 800 Hz.

Fig. 6. Condition number of T̂ versus the order: (a) 1∼1000 Hz; (b) 1001∼2000 Hz.

is given by [49]

p(r, θ) =

∞∑
l=0

jl(2l + 1) jl(kr )Pl(cosθ ) −

∞∑
l=0

jl(2l + 1)
jl(k R)
hl(k R)

hl(kr )Pl(cos θ ). (36)

This time, the considered frequency band is enlarged from fmin = 1 Hz to fmax = 2000 Hz with 1 Hz increment,
hus the required elements for the surface discretization is increased to 5808, which also means that the order of
his system is N = 5808. The total sound pressure distributions induced by the incident wave at the field point
r = 2R, θ = π/2) and (r = 5R, θ = π ) with prescribed threshold ε = 0.1 are reported. The partition of the
onsidered frequency range is conducted, where the first subinterval is from 1 Hz to 1000 Hz with the expansion
oint k◦ = 2π × 500/c. The second one is from 1001 Hz to 2000 Hz with k◦ = 2π × 1500/c.

Fig. 6 shows how the condition number of T̂ varies with the change of order n⋆. For the first frequency sub-range,
reduced model with n = 58 is generated, which is the sum of nlef = 13, nmid = 20 and nrig = 25. For the second

ne, a reduced model with n = 113 is created from the combination of nlef = 31, nmid = 41 and nrig = 41. For
fmid = 1500 Hz and frig = 1750 Hz, it is obvious from Fig. 6(b) that the maximum condition number of T̂ is
elow O(104) and their orders are controlled by the setting of the supremum of order 2M̂ . In this situation, the
ressure frequency spectrum of reduced model still approximates that of the original model very well, as can be

ˆ
een in Fig. 8, thereby highlighting the rationality of the 2M setting.
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Fig. 7. Sound pressure responses and relative errors between the FOM and ROMs over 1∼1000 Hz with ε = 0.1: (a) at (r = 2R, θ = π/2);
(b) at (r = 5R, θ = π ).

Fig. 8. Sound pressure responses and relative errors between the FOM and ROMs over 1001∼2000 Hz with ε = 0.1: (a) at (r = 2R,
= π/2); (b) at (r = 5R, θ = π ).

The computed results of the original system of order N = 5808 and the reduced-order systems of order n = 58
or the former frequency interval and n = 113 for the latter one, along with the analytical solutions are respectively
llustrated in Figs. 7 and 8. As the plots show, the present solutions are very close to the analytical and reference
OM results. Once again, the proposed adaptive process provides a cheap tool to ensure adequate accuracy for
requency sweep analyses of BE systems, and hence it is a suitable and achievable convergence criterion. In addition,
hese results together with the previous ones from Section 5.1 demonstrate that a relatively wide frequency band can
e divided into several sub-ranges, within each range a single expansion point can be allocated and to the end its
ulti-point counterparts covering the entire frequency band are formed. Furthermore, different element sizes (and

umber of meshes) can be applied for different frequency sub-ranges according to the rule of thumb.
For the purpose of comparisons, we include the results obtained from the standard Arnoldi-based algorithm with

he same expansion points k◦ and the same reduced order n. It is evident from Figs. 7 and 8 that the present
T-SOAR approach is more accurate than the FOAR for the dimension reduction of BE systems formed by the
urton–Miller BIE formulation.

In this verification case, the CPU time required to solve the FOM at 1000 frequency points is about 76.9 h. The
otal simulation time of the present approach is 36 min for the first frequency range and 38 min for the second
ne. Specifically, the largest proportion of the execution time happens in the offline phase (98.0%) and the online
16
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b
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Fig. 9. CPU time with respect to the number of DOFs N of the FOM.

frequency sweep analysis is fast (less than 1 min) since only low-dimensional approximated model rather than the
original model needs to be confronted. The computational merit of the proposed AT-SOAR approach is apparent
with a speed-up ratio of about 121 times. If only the online frequency sweep operation is assessed, this merit is
even more pronounced by a factor of more than 6000.

In order to further investigate the computational efficiency of the proposed methodology, a comparison analysis
is performed. Fig. 9 shows the variation of the total CPU time as a function of the number of order N (DOFs of the
FOM), where the sphere surface is meshed from coarse- to high-resolution discretization. It clearly indicates that
the present MOR technique is beyond two orders of magnitude faster than the directly computed FOM counterpart.

5.3. Scattering from a skipjack-class submarine model

For the last numerical example, we consider a complex skipjack-class submarine model, which is downloaded
from 3D CAD Browser [50] and graphically shown in Fig. 10. The submarine’s outer bounding box has dimensions
76.81 × 17.36 × 10.67 m and it is discretized using 26 649 constant triangular elements with 13 782 vertices. The
structure is immersed in an infinite extent filled with water and it is assumed to have a sound-hard surface. The
incident field is coming from a plane wave with a unit amplitude traveling in the direction (1, −1, −1). The purpose
of this case study is to assess the performance and robustness of the proposed AT-SOAR method for a complex
industrial geometry.

The frequency is swept over the band 0.5∼200 Hz in a 0.5 Hz increment because of rapidly varying responses
in the far-field. The expansion point k◦ is placed in the middle of the frequency range, i.e. k◦ = 2π × 100/c.
As mentioned before, Eq. (14) provides an estimator for the error originating from the Taylor series truncation.
For this case, the maximum distance rd of two points on the submerged structure is its length of 76.81 m, thus
M = 82 is required to satisfy the set tolerance ε = 0.1 across the entire frequency range. Three expansion points,
i.e. klef = 2π × 50/c, kmid = 2π × 100/c and krig = 2π × 150/c are employed to generate a global frequency-
independent orthonormal basis. Due to the presence of large-size structure, 4M̂ = 160 for each expansion point is
set.

Fig. 11 shows the absolute sound pressure responses of the FOM with N = 26649 and the ROM with n = 483
at three different field points, i.e. (350, 0, 0) m, (−350, 0, 0) m and (0, 350, 0) m. The errors between the FOM
and ROM are not given herein due to the relatively small changes in amplitude. The variation with the frequency
of the total sound pressure |p(r, θ)| located in the far-field is rapid, especially on the back of scatterers. The same

ehavior can also be observed from the previous two verification cases. Once again, the transfer function of the
OM approximates that of the FOM very well.
17



X. Xie and Y.J. Liu Computer Methods in Applied Mechanics and Engineering 373 (2021) 113532
Fig. 10. The considered skipjack-class submarine model and its BE mesh.

The real parts of sound pressure field ℜ(p) of the FOM and ROM at four different frequencies of 50, 100, 150
and 200 Hz are compared in Fig. 12. It is obvious that the constructed ROM accurately predicts the surface pressure
p at all the BE independent DOFs.

For this case, the computational time required for solving the FOM is 707 h. The CPU time required for the
proposed AT-SOAR method is 37.1 h, in which the offline phase takes up the largest percentage (99.9%) whereas
the elapsed time needed for the online phase that is to perform the simulation of the ROM can be negligible (only
0.1%). Therefore, the present adaptive MOR technique is a good way to obtain reliable solution with an acceptable
CPU time.

6. Conclusions

This paper proposes an efficient offline–online computational strategy for the acceleration of frequency sweep
analysis of exterior acoustic problems with different boundary conditions. The Burton–Miller BIE formulation
is used to deal with the fictitious eigenfrequency difficulty. The proposed model order reduction technique, AT-
SOAR in short, is first based on a frequency affine decomposition of the frequency-dependent property of the
integral kernels, where a local Taylor approximation is utilized; then followed by the SOAR algorithm to generate
a frequency-independent orthonormal reduction basis. A simple, cheap yet efficient adaptive scheme based on the
condition number of the upper Hessenberg matrix in the SOAR is further provided such that the dimension of
reduced system required for the desired accuracy can be determined before the congruence transformations start.
This way the computation of the FOM, comparison between different ROMs and unnecessary iterations can be
avoided. The frequency-independent reduction basis is then leveraged in the projection of the full-order, frequency-
decoupled system matrices, where a column-by-column projection is done to favorably handle the memory problem
caused by the series expansion. The comparison between the present AT-SOAR and the Krylov subspace-based
Arnoldi procedure is conducted and the suggestion on the multi-point expansions for relatively high-frequency
range and large-size structures is given. We have verified the simplicity and high-efficiency of the proposed overall
strategy in terms of both decreased DOFs and runtime.

The established solution framework can be directly combined with the BEM to perform high-fidelity and
broadband multi-frequency analyses of increasingly complex systems in such a way that numerical simulation (of
18
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Fig. 11. Comparison of sound pressure responses between the FOM and ROM: (a) at point (350, 0, 0) m; (b) at point (−350, 0, 0) m and
c) at point (0, 350, 0) m.

oise control and low-noise design) demands can be significantly reduced. In view of engineering sound-structure
nteraction environment, it would be worthwhile to further extend present approach to vibro-acoustic coupling
roblems. Another important extension of this work is the combination of the fast multipole BEM and MOR
echnique, where one uses far-field multipole and local expansions to manage the space domain and one uses
.g. Taylor expansion to separate the frequency domain.
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Fig. 12. Real parts of sound pressure distributions of the FOM (left) and ROM (right) at different frequencies.
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Appendix. The Arnoldi-based Krylov subspace technique

Algorithm 4 Algorithm template for the Arnoldi process
Input: C, r0; Output: Q⋆ for selected k⋆ with ⋆ being [lef, mid, rig]

1: preallocate Q = zeros(N , 2M̂ + 1)
2: q1 = r0/∥r0∥2
3: for j = 1, 2, · · · , 2M̂ do
4: r = Cq j

5: for i = 1, 2, · · · , j do
6: ti j = qH

i r
7: r = r − qi ti j

8: end for
9: t j+1, j = ∥r∥2

10: if t j+1, j ̸= 0 then
11: q j+1 = r/t j+1, j

12: else
13: breakdown
14: end if
15: end for
16: Q⋆ = Q j+1

Notations: C = −(W0 + k⋆V0)−1V0, r0 = (W0 + k⋆V0)−1bp.
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