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In this paper, a coupled numerical method of the edge-based smoothed finite
element (ES-FEM) with the fast multipole BEM (FM-BEM) is proposed to ana-
lyze structural acoustic problems. The vibrating structure is modeled using the
so-called ES-FEM-DSG3 method, where the 3-node linear triangle plate ele-
ments based on the Reissner–Mindlin plate theory with the discrete shear gap
(DSG) technique for overcoming the shear locking are applied. The edge-based
gradient smoothing operations are applied to “soften” the “overly-stiff” behavior
in the standard FEM, which significantly reduces the inherent numerical dis-
persion error. The normal velocities on the surface of the structure are imposed
as boundary conditions for the acoustic domain which is modeled using the
FM-BEM for both the interior and exterior acoustic domains. Comparing with
the conventional BEM, the matrix vector multiplication and the memory re-
quirement in the FM-BEM are reduced dramatically. The coupled ES-FEM/
FM-BEM method takes the advantages of both ES-FEM and FM-BEM, which
can avoid drawbacks of the “overly-stiff” behavior in FEM and computational
inefficiency in the conventional BEM. Two numerical examples are presented
to verify and demonstrate the effectiveness of the combined method: one aca-
demic problem for studying in detail the accuracy and efficiency of the present
method, and one application to a practical vehicle noise simulation. © 2014
Institute of Noise Control Engineering.
Primary subject classification: 75.3; Secondary subject classification: 75.5
1 INTRODUCTION

Noises generated by a vibrating thin structure can
be commonly found in numerous engineering systems,
such as aircrafts, sea vessels and the land vehicles.
These acoustic problems are closely associated to
fluid–structure interactions and are of increasing con-
cern when designing passenger transportation systems.
Many researchers have done great work to solve this
kind of problems. The widely used methods are the
standard finite element method (FEM) and/or the
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boundary element method (BEM)1–3. It is, however,
widely realized that substantial improvements are
needed to address the accuracy, efficiency and robust-
ness of these methods for coupled structural acoustic
problems.

FEM is extensively preferred to model the structure
part of structural acoustic problems, where lower-order
Reissner–Mindlin plate element is often chosen due to
its efficiency and simplicity4–6. However, this method
is well-known to have two inherent drawbacks. Firstly,
the Reissner–Mindlin plate elements often suffer from
the so-called “shear locking” problem in the thin plate
case, which is resulted from the incorrect transverse
shear strains under the pure bending condition7. The
other one is the “overly-stiff ” property of FEM in
the numerical solution, which leads to a significant
loss of accuracy8. In order to eliminate “shear locking”
phenomenon, many numerical techniques and effective
improvement of formulations have been proposed,
such as the selective reduced integration scheme9–11,
free formulation method12, and mixed formulation/
hybrid elements13,14. Unfortunately, all these methods
have some drawbacks like instability due to rank defi-
ciency, inaccuracy and complex formulation. Then
many new numerical techniques were developed to
Published by INCE/USA in conjunction with KSNVE



further enhance the stability and accuracy of numerical
solution. Such as enhanced assumed strain (EAS)
methods15,16 and assumed natural strain (ANS) meth-
ods17,18. Recently, the discrete shear gap (DSG)
method, which works for elements of different orders
and shapes, was developed for overcoming the “shear
locking” phenomenon. In this work, DSG is chosen
due to its several superior properties19. In the other
frontier of developing advanced FEM and overcoming
the “overly-stiff ” drawback of FEM, a family of
smoothed finite element methods (S-FEM) was devel-
oped by Liu et al. based on the so-called weakened
weak formulation using the gradient smoothing tech-
nique20–22. These novel S-FEM methods have been
found and proven to always be softer than the FEM
counterpart and offer desirable ways to effectively
“soften” the numerical model. The cell-based smooth-
ing finite element method (CS-FEM) was firstly devel-
oped, which works well for heavily distorted elements
and the general n-sided polygonal elements20. Then
node-based smoothed finite element method (NS-
FEM)21 was developed for overly-soft behavior so as
to produce upper bound solutions (for force driven
problems). It is found instable temporally due to the
overly-soft feature. Therefore, stabilization techniques
are needed when NS-FEM is used to solve dynamic
problems22. A soft yet temporal stable model, known
as the edge-based smoothed finite element (ES-FEM)
that exhibits “ultra” accuracy and super convergence
properties, was also formulated. In addition, it is found
to be the best performer of all the linear models devel-
oped so far for structural dynamic problems23–25. For
the above reasons, we choose ES-FEM together with
DSG technique to model the structure part of our
structural acoustic problems.

The standard BEM is based on the boundary integral
equation (BIE) formulations, which discretizes only the
boundary of the problem domain leading to a small set
of discretized system equations. In addition, it is ideal
for handling problems of infinite domains. Due to these
two major features, BEM has been found effective for
wave propagation problems such as the acoustics, and
particularly attractive for acoustics in infinite exterior
domains. BEM has been applied in acoustic area for
more than four decades26–28. However, due to its com-
putational inefficiency in establishing the discretized
system equations that is usually fully-populated and
badly conditioned, BEM is limited to solving models
with small or medium sizes. Over the past decades,
many techniques are applied to improve the overall
solution efficiency of BEM. Techniques including H-
matrices29, the wavelet basis30, the fast Fourier trans-
form31 and the fast multipole method32,33 are adopted
to accelerate the matrix–vector multiplication. Efficient
Noise Control Engr. J. 62 (4), July-August 2014
iterative solvers, such as the generalized minimum res-
idue (GMRES) method34 and the conjugate gradient
squared (CGS) method35 are also chosen to solve the
system of equations of a BEM model. Among all these
advances in BEM, the FM-BEM stands out for its out-
standing efficiency, and hence is chosen for modeling
the acoustic fluid, especially where there is an exterior
acoustic media involved.

The FM-BEM method has two key techniques to be
implemented. One is the fast multipole method (FMM),
which was first introduced by Rokhlin36 in the mid
1980s. The fundamental principle of the FMM is a mul-
tipole expansion of the kernel by which the direct con-
nection between the source point and the collocation
point is separated. Another is the use of iterative equa-
tion solvers, such as the GMERS34. With these two
techniques, the FM-BEM37–42 can reduce the matrix
vector multiplication dramatically. In addition, the
memory requirement is also reduced. The application
of FM-BEM in acoustics was introduced in detail by
Nail et al.40.

This research aims to take advantages of both ES-
FEM and FM-BEM techniques to model structural
acoustic systems. Through such coupling, we attempt
to avoid drawbacks of the “overly-stiff ” behavior in
the FEM for the vibrating structure, and computational
inefficiency in the BEM for the interior acoustic cham-
ber and exterior acoustic media. Considering the huge
difference in density between the solid structure and
air as the acoustic media, the feedback of the acoustic
air onto the structure is neglected in this work. This
means that only a “weak coupling” or one way coupling
from the solid structure to the air will be taken into con-
sideration. The ES-FEM is applied to approximate the
vibrations of the structure, whose normal velocities so-
lution are imposed as boundary conditions for the
acoustic domain. The FM-BEM is used to simulate
both the frequency responses in interior region and
sound field distributions in the exterior region.

The paper is organized as follows: In Sec. 2, we be-
gin with a brief description of basic ES-FEM formula-
tions implemented with DSG method for 2D structure
domain. In Sec. 3, Galerkin weak form and discretized
system equations for 3D acoustic problems are firstly
presented, and then the edge-based gradient smoothing
operation for 3D acoustic problems is briefly intro-
duced. In Sec. 4, conventional BEM formulation for
3D acoustic problems is firstly reviewed, and then the
multipole expansion theory, which is the fundamental of
the FM-BEM, is simply described. In Sec. 5, numerical
examples and application are presented to demonstrate
the efficiency and validity of the coupled ES-FEM/FM-
BEM. Finally, a summary is given in Sec. 6 to conclude
this work.
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2 ES-FEM FORMULATIONS FOR PLATE
STRUCTURE

Consider a vibrating plate subjected to external exci-
tations. The vibrating plate is modeled using 3-nodes
triangle plate elements based on the low order Reissner–
Mindlin plate theory. The Reissner–Mindlin theory is
intended for thick plates in which the normal to the
mid-surface remains straight but not necessarily perpen-
dicular to the mid-surface. Due to its simplicity and effi-
ciency, Reissner–Mindlin theory is useful and practical
for modeling plates that are not “thin” where the classic
plate theory is no longer valid. However, when it is ap-
plied to thin plates, these low-order plate elements often
suffer from the so-called “shear locking.” This is due to
that the transverse shear strains cannot vanish under the
pure bending condition based on the Reissner–Mindlin
theory. In order to eliminate the shear locking, discrete
shear gap triangular element (DSG) method19 has been
utilized to overcome the shear locking problem, together
with the edge-based smoothed techniques. For easy ref-
erence, this technique is termed as ES-FEM-DSG3,
where “3” stands for the fact that we use only triangular
elements. Because we use only triangular elements, the
geometry of the plate can be practically arbitrary.

2.1 ES-FEM-DSG3 Formulations Based
on the Reissner–Mindlin Plate

Based on the Reissner–Mindlin plates theory, the un-
known vector of three independent field variables at any
point in the problem domain of structure can be defined
as u = {θx, θy, w}

T, where θx and θy are the rotation
angles of the line normal to the undeformed neutral sur-
face in the x–z and y–z planes, respectively, and w is
the deflection. The dynamic variation equation for
Reissner–Mindlin plate elements without damping can
be described as follows43:Z

Ωs

deTbDbebdΩþ
Z
Ωs

deTs DsesdΩ

þ
Z
Ωs

duTrto2udΩ�
Z
Γs

duTtdΩ ¼ 0; ð1Þ

where the bending stiffness constitutive coefficients D ,
b
and transverse shear stiffness constitutive coefficients
Ds are defined as:

Db ¼ Et3

12 1� n2ð Þ
1 n 0
n 1 0
0 0 1� n=2

2
4

3
5;

Ds ¼ ktG
1 0
0 1

� �
; ð2Þ
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in which E represents Young's modulus, n is the Poisson
ratio, G is the shear modulus, and k is the shear correc-
tion factor that is set as 5/6 in this work.

The unknown field variable displacements can be
approximated by nodal displacements using shape
function:

u ¼ Νsue ¼
Xn
i¼1

Ni xð Þui;

du ¼ Nsdue ¼
Xn
i¼1

Ni xð Þdui; ð3Þ
where Ns is generalized shape functions and ue is the
vector of generalized nodal displacements for each

plate element. Ni and ui = {θxi, θyi, wi}

T are the shape
function and nodal variable at node i, respectively.
Applying Eqn. (3), the discretized system equations of
Eqn. (1) can be written in following matrix form43:

M€u þKu ¼ F; ð4Þ
where Z Z
K ¼
Ω
Bb

TDbBbdΩþ
Ω
Bs

TDsBsdΩ

The stiffness matrices ð5ÞZ
3 3

� �

M ¼ rNs

Tdiag t t
t NsdΩ
Ω 12 12
The mass matrix ð6ÞZ
F ¼ Ns
TtdΓ
Γs

The vector of nodal forces ð7Þ
whereBb ¼ Bb1 Bb2 ⋯ Bbn½ � is the strain–deflection

matrix for bending, Bs ¼ Bs1 Bs2 ⋯ Bsn½ � is the
strain–deflection matrix for shearing, t is the thickness of
the plate, and t is the external load on the plate, where:

Bbi ¼

� @Ni

@x
0 0

0 � @Ni

@y
0

� @Ni

@y
� @Ni

@x
0

2
666664

3
777775
;

�Ni 0
@Ni

@x

2
6

3
7
Bsi ¼

0 �Ni
@Ni

@y

4 5: ð8Þ

Using the smoothed strain–deflection matrix Bb
and Bs computed based on the edges of elements to
replace Bb and Bs, the smoothed stiffness can be
expressed as:

K ¼
Z
Ω

Bb
TDb BbdΩþ

Z
Ω

Bs
TDs BsdΩ: ð9Þ
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The details of computing the smoothing strain–
deflection matrices based on the edges can be found
in the following sub-section.

Finally, the ES-FEM-DSG3 formulation for struc-
tural domain then can be written as:

M€uþ Ku ¼ F: ð10Þ

2.2 Edge-Based Smoothing Operation
for the Plate Structure

In this section, edge-based smoothed finite element
method or ES-FEM for plates is introduced. The plate
domain is first discretized using a set of 3-node trian-
gles just as in the standard FEM. Because the Reissner–
Mindlin theory uses the derivatives of the deflection to
compute the strains, only the stiffness matrix is smoothed
in the ES-FEM. The assembling of the stiffness matrix
and the integration is based on the smoothing domains
which is associated with the edges of the triangles. Using
the edges of these triangles, we are able to construct Ns

smoothing domains. For edge k, the smoothing domain
Ωk is constructed by connecting the centroids of the
neighbor triangles and the end-points of edge k. As
shown in Fig. 1, for interior edges, the smoothing domain
Ωk is a quadrangle which is the assembly of the sub-
domains of two neighboring elements; while for edges
on the plate boundary, the smoothing domain Ωk is only
a single (triangular) sub-domain. The following are the
Field nodes Centroid of triangle

Edge of triangleBoundary of kΩ

Smoothing domain

kΩ

kΩ

kΓ

kΓ

Global boundary

Fig. 1—Triangular mesh for a plate for
ES-FEM model and edge-based
smoothing domains constructed by
connecting the centroids of the
neighbor triangles and the two
end-points of edge k.
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details of the calculation of the smoothed stiffness matrix
for the 2D structure problem.

The smoothing operation is firstly applied to the bend-
ing (in-plane) strain and the shear (off-plane) stain of the
plate over each of the edge-based smoothing domains:
«b xkð Þ ¼ 1
Ak

Z
Ωk

«b xð ÞdΩ;

«s xkð Þ ¼ 1
Ak

Z
Ωk

«s xð ÞdΩ; ð11Þ

where Ak is the area of the smoothing domain Ωk,

which can be calculated as follows:

Ak ¼
Z
Ωk

dΩ ¼ 1
3

XNe
k

i¼1

Ai
e ð12Þ

in which Ne
k is the number of the sub-domain of edge k

(that is either 2 for interior edges or 1 for edges on the
plate boundary), and Ai

e is the area of ith sub-domain in
a triangle element.

Based on the assumption made in the Reissner–
Mindlin plate theory, the bending strain can be
expressed as follows5.

«b xkð Þ ¼
X
i2Mk

Bbi xkð Þui; ð13Þ

whereMk is the total number of vertex of the smoothing
domain, which is either 4 for interior edges and 3 for
edges on the plate boundary.

When the thickness of plates becomes small, the
Reissner–Mindlin plates often suffer the shear locking
phenomenon. In order to avoid such a locking, the
shear strain is calculated using discrete shear gap trian-
gular element (DSG) method19. Combining with the
smoothing operation, the smoothed shear strain matrix
can be calculated as follows:

«s xkð Þ ¼
X
i2Mk

Bsi xkð Þui; ð14Þ

where the smoothed strain matrix Bbi xkð Þ and Bsi xkð Þ
in Eqns. (13) and (14) can be calculated by combining
with the Eqns. (11) and (12):
Bbi xkð Þ ¼ 1
Ak

XNe
k

i¼1

1
3
Ai
eBbi xkð Þ;

Bsi xkð Þ ¼ 1
Ak

XNe
k

i¼1

1
3
Ai
eBsi xkð Þ: ð15Þ

More details about Bbi(xk) and Bsi(xk) based on
Reissner–Mindlin plate theory and the discrete shear
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gap triangular element (DSG) method can be found in
Ref. 19.

Using the smoothed strain matrix Bs and Bb , the

smoothed strain stiffness matrix Kb
kð Þ and smoothed

shear stiffness matrix Ks
kð Þ
for the edge-based smoothed

domain k can be evaluated as:
Kb
kð Þ ¼

Z
Ωk

Bb
TDb BbdΩ

XNs

T
¼
k¼1

Ak Bb Db Bb;

Ks
kð Þ ¼

Z
Bs

TDs BsdΩ

Ωk

¼
XNs

k¼1

Ak Bs
TDs Bs: ð16Þ

The global smoothed bending stiffness Kb and global
smoothed shear stiffness Ks based on the edges can be as-
sembled just as the same procedure as in the standard FEM.
Then the global smoothed stiffness can be evaluated as:

K ¼ Kb þ Ks: ð17Þ
If the smoothing operation based on the edges is only

applied to bending stiffness Kb or shear stiffness Ks,
and the other one remains un-smoothed, we can obtain
two variant forms of ES-FEM, where the global stiff-
ness are computed using:

K Bð Þ ¼ Kb þKs; ð18Þ

where K Bð Þ is global smoothed stiffness with only the
bending stain smoothed. It is denoted as ES(B)-FEM.
Alternatively,
K Sð Þ ¼ Kb þ Ks; ð19Þ

where K Sð Þ is global smoothed stiffness with only the
shear stain smoothed. It is denoted as ES(S)-FEM.

3 ES-FEM FORMULATIONS FOR 3D
ACOUSTIC PROBLEMS

Note that the ES-FEM is applicable also to acoustic
problems, and this section briefs the process.

3.1 GS-Galerkin Weak Form and Discretized
System Equations

In the acoustic domain, we firstly define an enclosed
cavity Ωf with Neumann boundary ΓN, assuming that
the fluid is homogeneous, inviscid, compressible and
200 Noise Control Engr. J. 62 (4), July-August 2014
only undergoes small translational movement. Letting
p denote the acoustic pressure and k denote the wave
number, the governing equation for the sound pressure
can be expressed as:

Δpþ k2p ¼ 0; in Ωf ; ð20Þ

where Δ is the Laplace operator, the wave number can
be written as k = o/c, o is the angular frequency of
the pressure oscillation, and c is the speed of sound
traveling in the acoustic fluid.

The Neumann boundary of the acoustic domain can
be defined as the following:

rp�n ¼ �jrovn; on ΓN ð21Þ

where j ¼ ffiffiffiffiffiffiffi�1
p

, r is the density of medium. vn denotes
normal velocity on the boundary. The field variable
pressure can be approximated using a shape function,
defined as:

p ¼
Xm
i¼1

Nipi ¼ Np; ð22Þ

where Pi denotes the unknown nodal pressure and Ni

are shape functions in node i. N is the generated shape
function and P is the vector of generated pressure for
each tetrahedron element.

Applying the Eqn. (22), using shape function as the
weight function, the standard Galerkin weak form for
acoustic problem without acoustical damping can be
written as25:

�
Z
Ω
rN�rNP dΩþ k2

Z
Ω
N�NPdΩ

� jro
Z
ΓN

N�vndΓ
¼ 0: ð23Þ

Using the smoothed item rN based on the edges of

elements to replace the gradient component rN, the
generalized smoothed Garlerkin (GS-Galerkin) weak
formulation for acoustic problem can be written as:

�
Z
Ω

rN� rNPdΩþ k2
Z
Ω
N�NPdΩ

� jro
Z
ΓN

N�vndΓ
¼ 0: ð24Þ

Finally, the discretized system equations in Eqn. (24)

can be written in following matrix form:

K ¼
Z
Ω

rN
� �T rNdΩ: ð25Þ
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where:
Z

K ¼
Ω

rN
� �T rNdΩ

The smoothed acoustical stiffness matrix
ð26Þ
Μ ¼

Z
NTNdΩ
Ω

The acoustical mass matrix ð27Þ

Z

F ¼
ΓN

NTvndΓ

The vector of nodal acoustic forces ð28Þ
Pf gT ¼ p1; p2⋯; pnf g
Nodal acoustic pressure in the domain

ð29Þ

3.2 Edge-Based Gradient Smoothing
Operation for 3D Acoustic Domain

In this section, the formulation of ES-FEM for 3D
acoustic fluid is presented. The acoustic domain is di-
vided exactly as that of standard FEM using four node
tetrahedral elements. The edge-based gradient smooth-
ing domains, which are also serving as integration
domains, are then formed in association with these tet-
rahedral elements. As shown in Fig. 2, the sub-smooth-
ing domain of edge k in cell i is created by connecting
the centroid of cell i to the two end-nodes of the edge
k and the related surface triangles.
n

n

n

n

n

n

n

n

Edge k

Fig. 2—3D edge-based smoothing domains
constructed by connecting the centroid
of cell i to end-nodes of the edge k
and the related surface triangles.
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For acoustic problems, the gradient smoothing oper-
ation will be applied over each edge-based smoothing
domain on the velocity v. The smoothed velocity, which
is deduced by the gradient of acoustic pressure, is
denoted as:

v xkð Þ ¼ 1
Vk

Z
Ωk

v xð ÞdΩ; ð30Þ

where Vk ¼
Z
Ωk

dΩ denotes the volume of smoothing

domain for edge k.
The smoothed velocity can be expressed in terms of

acoustic pressure by applying the Green's theorem:

v xkð Þ ¼ � 1
jroVk

Z
Ωk

rpdΩ

¼ � 1
jroVk

Z
Γk

p�ndΓ: ð31Þ

Substituting the field variable (acoustic pressure) in-
terpolation in form of Eqn. (22) into Eqn. (31), the
smoothed velocity for edge k can be denoted as the fol-
lowing matrix form:

v xkð Þ ¼ � 1
jro

X
I2Mk

Bi xkð Þpi; ð32Þ

where Mk represents the total number of nodes in the
smoothing domain of edge k. Bi can be defined as:

B
T
i xkð Þ ¼ bi1 bi2 bi3

� � ð33Þ

bip ¼ 1
Vk

Z
Γk

Ni xð Þnp xð ÞdΓ: ð34Þ

Finally, the smoothed stiffness matrix shown in

Eqn. (25) can be assembled based on the smoothed B
as:

K
kð Þ ¼

Z
Ωk

BT BdΩ ¼
XNs

k¼1

Vk BT B: ð35Þ

Owning to the compact supports of the FEM shape
functions, the assembled smoothed stiffness matrix
Eqn. (35) is banded and symmetric. Therefore system
equations can be solved efficiently, even though it dis-
cretizes the entire domain, as long as the domain is
enclosed. However, when it is used for exterior media
(that is infinite), some kind of non-reflecting boundary
techniques44 must be used. In such cases, the FM-BEM
can be a better choice, because there is no need for artificial
non-reflecting boundary.
201Published by INCE/USA in conjunction with KSNVE



4 FAST MULTIPOLE BEM FOR
ACOUSTIC PROBLEMS

4.1 Conventional BEM Formulations
for Acoustic Problems

In this section, we first review the conventional BEM
formulation for Helmholtz equations. The fundamen-
tal solution or the full-space Green's function for
acoustic problems is well-known and can be denoted
as follows45:

G x; yð Þ ¼ e�jk x�yj j

4p x� yj j ; ð36Þ

where j ¼ ffiffiffiffiffiffiffi�1
p

, k is the wavenumber, and |x � y| is
the distance between the collocation point x and the
source point y.

Combining the conventional boundary integral equa-
tion (CBIE) and the hypersingular boundary integral
equation (HBIE), a well-known integral equation,
named as CHBIE formulation, for Helmholtz equation
in Eqn. (20) without the incident wave can be written
as45:

Z
Γ

@G x; yð Þ
@n yð Þ p yð ÞdΓ yð Þ þ C xð Þp xð Þ

2
4

3
5

þ a
Z

@2G x; yð Þ
p yð ÞdΓ yð Þ
Γ
@n yð Þ@n xð Þ

¼
Z

G x; yð Þq yð ÞdΓ yð Þ

ΓZ

@G x; yð Þ
2 3
þ a

Γ
@n xð Þ q yð ÞdΓ yð Þ � C xð Þq xð Þ4 5

8x 2 Γ: ð37Þ
where q is defined as q ¼ @p

@n. The constant C(x) is set as

1/2 for smooth surface around x, and the coupling con-
stant a is defined as j/k.

Dividing the boundary into N surface elements, the
discretized form of the CHBIE formulation can be
expressed as45:

XN
j¼1

fijpj ¼
XN
j¼1

gijqj: ð38Þ

where:
Z

fijpj ¼
ΔΓj

@G x; yð Þ
@n yð Þ pjdΓ yð Þ þ 1

2
dijpj

þ a
Z

@2G x; yð Þ
p dΓ yð Þ
ΔΓj
@n yð Þ@n xð Þ j
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gijqj ¼
Z
ΔΓj

G x; yð ÞqjdΓ yð Þ

þ a
Z
ΔΓj

@G x; yð Þ
@n xð Þ qjdΓ yð Þ � 1

2
dijqj

2
64

3
75; ð39Þ

where dij is the Kronecker Delta, and ΔΓj denotes
element j.

The discretized form of the Burton–Miller formula-
tion in Eqn. (38) can be transformed to the following
system of equations by moving the known terms to
the right-hand side and the unknown terms to the left-
hand side.

a11 a12 ⋯ a1N
a21 a22 ⋯ a2N
⋮ ⋮ ⋱ ⋮
aN1 aN2 ⋯ aNN

2
664

3
775

l1
l2
⋮
lN

8>><
>>:

9>>=
>>;

¼
b1
b2
⋮
bN

8>><
>>:

9>>=
>>;
or Al¼b ð40Þ

where A, l and b are the system matrix, unknown vec-
tor and known vector, respectively.
4.2 The Fast Multipole Method Implemented
in BEM

There are two main techniques applied to improve
the efficiency of the conventional BEM. Firstly, the fast
multipole method (FMM) is employed to speed up the
matrix–vector multiplication in Al, then an efficient it-
erative solver, such as the generalized minimum residue
method (GMRES), will be applied to solve the system
of equations given by Eqn. (40). With FMM, the fast
multipole boundary element method can be con-
structed. The fundamental principle of the FMM is a
multipole expansion of the kernel in which the direct
connection between the source point and the colloca-
tion point is separated. The details of the derivations
of the FM-BEM formulations can be found in Refs. 40
and 45. With the fast multipole BEM, acoustic BEM
models with DOFs up to several millions have been
solved on laptop PCs with a RAM size of only 8 GB.
5 NUMERICAL EXAMPLES

In this section, two numerical applications of 3D
cases are presented, in order to verify the effectiveness
of the proposed combination of ES-FEM and FM-
BEM formulations. Because of the huge difference
existing in terms of mass density of the structure and
Published by INCE/USA in conjunction with KSNVE



Point A-exciting point 

Point B-a response point  
in the acoustic domain 

Aluminum Plate ( s) 

Acoustic domain ( f)

Fig. 3—A flexible aluminum plate backed by a
box of air.
air, acoustic modes are not coincident with the struc-
tural modes; it is thus practical to neglect direct interac-
tions between the structure and air46, meaning that the
structure dynamics is assumed not to be influenced by
the fluid. For comparison, the results obtained from
the FEM with extremely fine mesh are also provided
as the reference results. The purpose of the first exam-
ple of a simple elastic plate backed by a closed acoustic
cavity is to show the advantages of ES-FEM and FM-
BEM. The second example is an application of the
present combined methods to a practical problem in ve-
hicle engineering.
5.1 Box with Flexible Plate on Top

In this subsection, a weak coupling model of a flex-
ible plate and air cavity is established. The model is
shown in Fig. 3. The weakly coupled model is a combi-
nation of the flexible plate on the top and a closed
acoustic cavity attached. The elastic plate is made of
aluminum (r = 2700 kg/m3, n = 0.3 and E = 71 Gpa).
The acoustic cavity is full of air (r = 1.21 kg/m3 and
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Fig. 4—Frequency responses computed at point A
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c = 343 m/s). The plate, which has a dimension of
0.50 m � 0.60 m and a thickness of t = 0.003 m, is sim-
ply supported on all the four edges. The closed acoustic
cavity has a dimension of 0.50 m � 0.60 m � 0.40 m.
The remaining walls (except the coupled wall) of cavity
are assumed to be rigid with the surface velocity fixed
at v = 0.

The top elastic plate is divided with Reissner–Mind-
lin triangle plate elements. An evenly distributed time
harmonic load equal to 100 N is applied at the center
of plate (point A in Fig. 3). First, the forced frequency
responses are computed at the center of the plate using
different methods including FEM, ES-FEM, ES(B)-FEM
and ES(S)-FEM with same model (155 nodes, 264 ele-
ments). The frequency ranges from 1 to 1000 Hz. The
reference result is provided using FEM with much smal-
ler elements (1265 nodes, 2390 elements).

As shown in Fig. 4, in the low frequency domain (0
to 200 Hz), results obtained from FEM and ES-FEM
show excellent agreements with the reference result,
demonstrating that both FEM and ES-FEM can provide
accuracy results in low frequencies. As the frequency
increases, the deviation between FEM result and the
reference result becomes larger, suggesting that the ac-
curacy of the FEM result decreases with the increase of
the frequency. We also note that the eigen-frequencies
in FEM result (peaks in response curve) become higher
and higher compared to the reference result. This devi-
ation mainly results from the inherent drawback of
“over-stiffness” in FEM based on the standard weak
formulation. The ES-FEM provides much more accu-
rate result in higher frequency range, compared to the
FEM model using the same mesh. From Fig. 5, we
can see that ES(B)-FEM can also produce results simi-
lar to that of ES-FEM. The softening effect of ES(B)-
FEM is almost equal to that of ES-FEM. In addition,
as showed in Fig. 6, the response curves obtained from
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cy(Hz)
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FEM
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using ES-FEM and FEM for the plate alone.
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Fig. 5—Frequency responses computed at point A using ES(B)-FEM, ES-FEM and FEM for the
plate alone.
ES(S)-FEM have little difference from that of FEM (us-
ing the same mesh), which means that the softening ef-
fect by the edge-based smoothing on the off-plane shear
strain is minimum and can be neglected. Therefore, it
can be concluded that the total softening effects of
ES-FEM are mainly due to smoothing the in-plane
bending strain.

The sound pressure level (SPL) responses at point B
in acoustic domain (Fig. 3) are also computed using
various combination of methods, and the results are
plotted in Fig. 7. The normal velocity of the flexible
plate, which provides the boundary condition of acous-
tic domain, is approximated using ES-FEM and FEM.
The 3D acoustic domain is divided using tetrahedron
elements (1045 nodes, 6335 elements) for FEM and
ES-FEM. If FM-BEM is chosen, only the surface of
the 3D acoustic domain is discretized with triangle ele-
ments, and hence the number of elements is much
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Fig. 6—Frequency response analysis in point A u
plate alone.
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smaller (634 nodes, 1264 elements). The computation
is performed for frequencies ranging from 1 to
700 Hz. For comparison, the numerical result obtained
by the coupled FEM/FEM with a very fine mesh
(15,864 nodes and 82,858 elements) is presented as
the reference.

As shown in Fig. 7, the coupled FEM/FEM gives the
least accurate results compared to all the other models.
The over-stiffness phenomenon of FEM in 3D acoustic
problems can also be observed, and it becomes much
more pronounced with the increase of the frequency.
The stiffness matrix in coupled ES-FEM/ES-FEM is
softer, and hence the results in high frequency range
show better agreements with reference results. The cou-
pled ES-FEM/FM-BEM model has almost the same
level accuracy as the coupled ES-FEM/ES-FEM model.
It is found that the FM-BEM can offer accurate results
for interior acoustic problems.
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Fig. 7—The sound pressure level (SPL) responses computed at point B using ES-FEM/FM-BEM,
ES-FEM/ES-FEM and FEM/FEM.

Exciting point 

Response point at driver's

left ear 

Automobile coping ( sΩ ) 

Acoustic domain ( fΩ ) 

Fig. 8—A weak coupling model combined by
the flexible coping and the passenger
compartment.
5.2 Automobile Passenger Compartment
with a Flexible Roof

In this example, the application of the present com-
bined method (ES-FEM and FM-BEM) to a practical
problem of vehicle engineering is examined. The vehi-
cle body is made of panels, and is usually welded with
numerous thin steel plates, among which, the automo-
bile coping is one of the largest structures in the vehi-
cle. The roof can be easily excited, and undergoes low
amplitude vibration, generating noises, which contri-
butes strongly to both the interior sound pressure level
(SPL) in the automobile passenger compartment and
the exterior noise pressure distribution.

In this study, a weak coupling model between the
flexible roof and the passenger compartment is estab-
lished as shown in Fig. 8. The boundary edges of the
roof is totally fixed with w = 0, θx = 0 and θy = 0. It
is discretized using 422 Reissner–Mindlin triangle plate
elements with 241 nodes. The elastic plate is made of
steel (r = 7900 kg/m3, n = 0.3 and E = 210 GPa), with
a thickness of 0.001 m. The automobile passenger com-
partment is divided using 139,945 tetrahedron elements
with 26,498 nodes for the FEM and ES-FEM. When
the acoustic domain is calculated using FM-BEM, only
the surface of the 3D acoustic domain is meshed with
constant triangle elements that are much less in numb-
ers (11,550 elements and 5777 nodes). An evenly dis-
tributed time harmonic load (100 N) is applied in the
middle of the coping (exciting point in Fig. 8). Both
the interior the sound pressure level (SPL) and the exte-
rior of sound pressure distribution are computed and
examined.

The sound pressure level (SPL) responses calculated
at driver's ear point obtained using the coupled ES-
FEM/FM-BEM and coupled ES-FEM/ES-FEM are
plotted in Fig. 9. The results are compared against the
Noise Control Engr. J. 62 (4), July-August 2014
reference result that is calculated using coupled FEM/
FEM with 630,441 elements and 114,174 nodes.

As shown in Fig. 9, the results for this complicated
example reinforces the finding from the previous sim-
ple example. The response results from the ES-FEM/
FM-BEM agree well with that from ES-FEM/ES-
FEM. Both results are much more accurate than the
FEM/FEM results using the same mesh. In the low fre-
quency range (0 to 40 Hz), all the coupled methods can
produce very accurate solutions, which is in a good
agreement with the reference result. As the frequency
increases, the result obtained from the coupled FEM/
FEM becomes inaccurate. Both ES-FEM/FM-BEM
and ES-FEM/ES-FEM results have similar level of ac-
curacy, much more accurate than the FEM counterpart,
and the eigen-frequencies (peak in response curve) are
much closer to that of the reference result.

In order to examine the performance of the ES-FEM/
FM-BEM comparing with the conventional ES-FEM/
205Published by INCE/USA in conjunction with KSNVE
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Fig. 9—The sound pressure level (SPL) responses at vehicle driver's ear point obtained using
ES-FEM/ES-FEM, ES-FEM/FM-BEM and FEM/FEM.
BEM, the forced frequency response at driver's ear point
are computed and plotted in Fig. 10. It is observed that
the results obtained from ES-FEM/FM-BEM coincide with
the one from ES-FEM/BEM. This indicates that the FMM
operation does not lead to any loss of accuracy if the FMM
parameters are chosen reasonably. However, the compu-
tational efficiency is improved significantly via the FMM
operations. The efficiency of ES-FEM/FM-BEM is fur-
ther evident in the following numerical example.

Solving sound radiation problems is one of the most
important and useful application of the boundary inte-
gral methods. In this subsection, we further explore
the boundary integral approaches using a larger scale
problem. The radiation of acoustic waves from vibrat-
ing portions of the vehicle body is studied. The vehicle
body model, which is used in the previous case, has an
overall dimensions of 2.7 m � 1.4 m� 1.3 m in the x, y
and z direction, respectively, and is meshed with 11,550
constant triangular elements (Fig. 8). For data collec-
tion for the velocity potential distribution, a total of
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Fig. 10—The sound pressure level (SPL) response
ES-FEM/BEM and ES-FEM/FM-BEM.
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1170 field points are placed on a semi-cylindrical sur-
face with radius of 2.5 m, shown in Fig. 11. The har-
monic vibrations of the roof along the z direction are
computed by ES-FEM-DSG3, subjected to a harmonic
load of 100 N with a frequency of 82.13 Hz, at the cen-
ter of the coping (exciting point in Fig. 8). The sound
pressure distribution on the surface of the semi-column
cylinder is computed using the FM-BEM and BEM and
shown in Fig. 12. It is found that sound pressure level
(SPL) distribution obtained using the ES-FEM/FM-
BEM and ES-FEM/BEM is almost the same, which
demonstrates that FM-BEM can solve the radiation
problem as the BEM without the loss of accuracy. To
examine the efficiency of various combination of
models, the vehicle body is discretized using different
size elements. The CPU time used by the ES-FEM/
FM-BEM and the ES-FEM/BEM codes is recorded,
and the comparison is shown in Fig. 13. It is clearly
shown that the ES-FEM/FM-BEM is much less time-
consuming than ES-FEM/BEM in solving all different
120 140 160 180 200
cy(Hz)
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Fig. 11—Semi-cylindrical surface for
examining the sound pressure excited
by a vibrating coping of vehicle.
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Fig. 13—CPU time used by the ES-FEM/
FM-BEM code compared with that
of the ES-FEM/BEM code.
sizes of models (DOFs from 4000 to 12,000). The CPU
time for the ES-FEM/FM-BEM code scales almost lin-
early with the increase of the DOFs. The conventional
BEM, however, scales about as a cubic function with
Computed sound-pressure distribution using ES-FEM/BEM.
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Fig. 12—Computed sound-pressure
distribution on a semi-cylindrical
surface for the vehicle body model
(at 82.13 Hz) using different
combined methods.
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the DOFs, and it can only solve models with up to
17,300 DOFs on the same PC.
6 CONCLUSIONS AND DISCUSSIONS

In this paper, a coupled ES-FEM/FM-BEM method
is proposed for analyzing structural acoustic problems.
Our combined approach takes the best advantages of
both ES-FEM and FM-BEM, and the inherent draw-
backs of the “overly-stiff ” in FEM and computational
inefficiency in BEM are overcome. Numerical exam-
ples of structural acoustic problems have demonstrated
the following features of the present method:

1. For the Reissner–Mindlin plates, the total soften-
ing effect of ES-FEM is mainly resulted by
smoothing of the in-plane bending strains, while
smoothing the shear strain has little effects.

2. The coupled ES-FEM/FM-BEM can produce
much more accurate results than that of the
FEM/FEM in middle frequency range for interior
acoustic problems.

3. The coupled ES-FEM/FM-BEM produces almost
the same level of accuracy as the coupled ES-FEM/
ES-FEM, which means that the FMM operation in
ES-FEM/FM-BEM does not lead to significant loss
of accuracy.

4. Owning to the FMM technique and the iterative
equation solver (GMERS) applied in FM-BEM,
coupled ES-FEM/FM-BEM is much more effi-
cient than ES-FEM/BEM for exterior noise radia-
tion problems, without losing accuracy. It is
found that ES-FEM/FM-BEM can be several
times faster than ES-FEM/BEM, which is espe-
cially crucial for large-scale numerical acoustic
problems.
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