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A fast multipole boundary element method (BEM) for solving 2-D multiple crack problems in linear elastic
fracture mechanics is presented in this paper. For multiple crack problems, both the degrees of freedom (DOFs)
and the size of system matrices increase quickly as the number of cracks increases, and the conventional BEM
cannot support such large systems. Instead of using the singular quarter-point boundary elements at the crack
tips, constant line elements are applied to symmetrically discretize the outer boundaries and crack surfaces in
the present approach. In order to keep the accuracy within a limited acceptable range, a relatively large
number of constant elements are required to discretize the crack surfaces. The crack opening displacement
(COD) fields of the multiple crack problems are obtained by the fast multipole BEM. Stress intensity factors
(SIFs) are extracted from the obtained displacement fields near the crack tip by using one point COD formula.
Comparison of the CODs between the fast multipole BEM and a finite element method using ANSYS are
illustrated to show the feasibility of the proposed approach. With the acceleration of fast multipole technique,
multi-crack problems can be dealt with desktop PCs. Several numerical examples are presented for computing
the SIFs of cracks to study the effectiveness and the efficiency of the proposed approach. The numerical results
clearly demonstrate the potentials of the fast multipole BEM for solving 2-D large-scale multi-crack problems
by using constant elements.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering materials and structures often contain multiple
cracks. Cracks can easily lead to the failure of structures. Therefore,
the prediction of crack behaviors and fracture characteristics of
these solid materials with multiple cracks need to be studied.
A major result of linear elastic fracture mechanics (LEFM) theory is
that crack behaviors can be determined by the value of stress
intensity factors (SIFs) at the crack tips, which is dependent on
the applied load, crack size and geometrical configuration of the
cracked structure. The computation of SIFs thus plays a very
important role in LEFM applications. However, due to the huge
consumption of computation time and computer memory, many
multiple crack problems have not been solved numerically. More
reliable, accurate and efficient numerical techniques are needed to
develop a useful tool for modeling multiple crack problems.

The finite element method (FEM) has a well-documented history in
fracture mechanics applications. There are fairly developed software,
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such as ANSYS and ABAQUS, now widely available in many engineer-
ing fields. In spite of the FEM wide-spread popularity, the multiple
crack problems are probably one class of the most difficult problems to
deal with using the FEM because of the discretization near the crack
tips. The subsequent boundary element method (BEM) is also recog-
nized as a highly efficient numerical technique for the LEFM analysis
[1-3] because of its boundary-only discretization nature. In other
words, only the outer boundaries of the domain and the crack surfaces
need to be discretized. Compared with domain methods such as
the FEM, the BEM reduces the initial data preparation because of the
reduction in dimensionality of original problems. Furthermore, the
remodeling process is much more convenient than the FEM. As a
result, the conventional BEM enjoyed a good reputation of dimension
reduction and easy meshing in remodeling. However, for the conven-
tional BEM, when the model has millions of DOFs for large-scale
multiple crack problems, it is inefficient for modeling the crack
behaviors and their propagations on desktop PCs. Therefore, the
computation efficiency and memory storage have been serious con-
cerns for analyzing large-scale multiple crack problems using the BEM
because of its dense and asymmetric coefficient matrices.

In order to reduce the CPU time and memory storage, the fast
multipole method (FMM) pioneered by Greengard and Rokhlin [4]
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has been applied to the BEM in the mid of 1980s, leading to the so-
called fast multipole BEM. The fast multiple BEM and its applica-
tions has been developed intensively by many researchers in the
last two decades for elasticity problems. Peirce and Napier [5]
developed a spectral multipole approach for 2-D large scale
elastostatics analysis. Fu et al. [6] and Popov et al. [7] studied 3-
D elastostatics problems. Yoshida et al. [8] applied a new fast
multipole technique for solving 3-D elastostatic crack problems.
Wang and Yao [9,10] applied a fast multipole BEM using a new
form of complex Taylor series expansions and expressive results
were obtained using higher-order elements for 2-D problems.
Wang and Yao [9] also studied 2-D crack problems using a dual
BIE approach with the CBIE collocating on one crack surface while
HBIE on the opposite crack surface, which demonstrated the
promises of the fast multipole BEM for solving large-scaled
engineering problems. A comprehensive review of the fast BEM
was elaborated by Nishimura in [11] and Liu in [12].

For a 2-D crack problem, in order to achieve better results of
the displacement fields, higher-order elements and special crack
tip elements, such as quarter-point elements have been often used
in most previous publications, showing the effectiveness of using
quarter-point elements. However, instead of using this special
quarter-point elements at the crack tips, constant elements are
applied to discretize the outer boundaries of the domains and
crack surfaces in this work. Correspondingly, to keep the comput-
ing accuracy within an acceptable range, a relatively large number
of constant elements are required on the crack surfaces. On the
other hand, the size of the system matrices will grow very large
with the increase of the number of cracks. Multiple crack problems
usually need large BEM models while constant elements are used,
possibly millions of degrees of freedom (DOFs) in some large-scale
cases, which can lead to a time-consuming calculation. Based on
the above two considerations, the fast multipole BEM is an
efficient technique and can be employed to deal with large-scale
cracks in case of the solution complexity increases.

In the fast multipole BEM for this study, a dual boundary
integral equation (BIE) formation (a linear combination of con-
ventional BIE (CBIE) and hypersingular BIE (HBIE)) is employed to
analyze multiple crack problems by using constant elements based
on the work [12]. First, in the fast multipole BEM models, similar
to conventional BEM, the outer boundaries of the domain and
crack surfaces are discretized by constant elements. Then, the
multipole and local expansions of the kernel functions were used
and the generalized minimal residual method (GMRES) is applied
as the iterative solver to obtain the unknowns on the boundaries.
With the application of fast multipole technique, both the CPU
time and memory storage in most cases can be reduced to about O
(N), where N is the number of DOFs. Finally, once all the CODs are
known, the values of stress intensity factors (SIFs) using the one
point COD formula near the crack tip can be obtained using the
COD results.

The structure of this paper is organized as follows: in Section 2,
a brief review of the CBIE and HBIE formulations for 2-D crack
problems is given. In Section 3, the main steps of fast multipole
technique are briefly reviewed. More details can be found in [12].
In Section 4, several numerical examples of models with large
number of cracks both in finite and infinite plates are simulated to
show the feasibility of constant elements and the efficiency of the
proposed approach. The paper concludes with some discussions
and potential extensions in the Section 5.

2. Basic BIE formulations for multiple cracks analysis

Without loss of generality, consider a 2-D linear elastic solid £2
with boundary I (including the outer boundary and the surfaces

of N cracks), where the body forces are neglected in this study.
The displacements at the source point y can be expressed by the
conventional BIE on the crack surface as follows [12-14]:

YUiy) = / (U, y)dl (o) — / wOT;6 ) (),
r r
ved U ) (1)

where x is the field point; i and j denote the Cartesian compo-
nents; u; and t; are the displacement and traction components at
the field point x, respectively; y=1 if ye 2 and y=0.5 if yel”
where I” is smooth. The two kernel functions Uj(x,y) and T(x,y) in
Eq. (1) are respectively the Kelvin displacement and traction
fundamental solutions which can be found in many BEM publica-
tions [1-3]. Once the components of relative displacement dis-
continuities on crack surface are known, the CODs will be given by
Au; as follows:

Aui(%) = Ui(X) g c p+ —UiX)lxca- 2

where A" and A~ represent the upper and the lower surfaces of
the crack, respectively. Therefore, the displacement u;(y) can be
determined by the traction 7j(x) on the outer boundary I, the
displacement u;(x) on the rest of the outer boundary. In BIE (1),
integral with the U kernel is a weakly-singular integral, while the
other one with the T kernel is a Cauchy principle-value (CPV)
integral.

However, under the given boundary conditions, the solutions of
the unknowns are still not sufficient to obtain by the sole CBIE of
Eq. (1). Thus, to solve a given problem containing multiple cracks,
an additional boundary integral equation should be constructed on
the opposite surface of the crack, that is, the traction BIE. To do
this, taking derivatives of Eq. (1) and applying the stress-strain
relation, one can obtain the corresponding traction BIE as follows
[12-14]:

YT =) /F 10U (%)l ()~ ny(y) /F 0T e, )AL (x),
yve U Q) 3)

where n; being the component of the outward unit directional
cosine at the source point y. The two kernel functions U (x,y) and
Ti(x,y) in Eq. (3) contain derivatives of Uj(x,y) and Tj;(x,y)
together with elastic constants. As the source and field points
are coincided on the crack surfaces, the kernel functions U (x, y) is
a CPV integral and Ty (x,y)will exhibit a hypersingularity of order
0(1/r?). Therefore, traction BIE (3) is also named hypersingular BIE
(HBIE). The treatment of singular forms of traction integral Eq. (3),
which contains strongly singular and hypersingular integrals, is
very useful and also has been always a challenge for many BEM
researchers. In the conventional BEM approach, the difficulty
caused by hypersingular integrals was overcome by using the
concept of the finite part integral. When constant elements are
used, all the singular and hypersingular integrals in traction BIE
(3) can be evaluated analytically which can be found in Ref. [12].
As a result, under the given displacement or traction boundary
conditions, the unknowns can be solved uniquely by using the
displacement and traction boundary integral equations of CBIE
(1) and HBIE (3).

To solve CBIE (1) and HBIE (3) simultaneously, a dual BIE
(CHBIE) formulation of using a linear combination of the CBIE
and HBIE can be written as follows [12]:

a CBIE+/ HBIE=0 4)

where o and f are the coupling constant. In this study, the
constant variable « is set to be 1.0, while fis equal to the size of
constant element length used in the model. More discussions on
the choice of fcan be found in [15-18] for other cases. In these
publications, the CHBIE (4) has been found to be very effective and



Z. Guo et al. / Engineering Analysis with Boundary Elements 47 (2014) 1-9 3

efficient for solving potential, elastostatic, elastic wave and acoustic
wave problems. This paper also shows that CHBIE (4) is efficient for
crack problems.

With the displacements and tractions being first determined at
the boundary and crack surfaces, the displacements, stress and
strains at the any point in the domain and the crack tips can be
computed. Once the entire unknown CODs on the crack surfaces
are obtained by the fast multipole BEM, the stress intensity factors
K; and Kj; for each crack can be easily determined using one point
COD formula at the crack-front elements as follows [2]:

G 2r
K[ = m\/;Aun(r) (5)
and

G 2r
Ky = m\/;Aus(r) (6)

where K; and Kj; are the SIFs of mode I and mode II at the crack tip;
G is the shear modulus of materials; r is the radial distance from
the observed point to the crack tip; Au,(r) and Aug(r) are the
opening (normal) and sliding (tangential) components of the
nodal displacements on the crack surfaces, respectively. The
parameter k¥ =3 —4uvfor plane strain, while x =(3-v)/(1+v) for
plane stress, where v is Poisson's ratio. It can be apparently seen
that only the nodal displacements data near the crack tip are used
to extract the SIFs according to Egs. (5) and (6).

3. Solution procedures of the fast multipole BEM

The fast multipole techniques for solving potential, elastostatic,
stokes flow and acoustic wave problems, i.e. using CHBIE (4) have
been described in details in [5-12]. Since the kernel functions of a
given crack problems are the same as in [12], the main steps of
crack problems using the fast multipole BEM are summarized in
this section. In this study, constant elements are applied to
discretize the BIEs. All the moments are evaluated analytically, as
well as in integrations of the kernel functions in the near-field
direct evaluations. The details of the multipole and local expan-
sions of the fast multipole BEM will not elaborated here since it is
not main purpose of the present paper. As mentioned before, it is
clear that if all the unknown CODs of a crack are obtained, the
crack problems can be solved such as computing the stress
intensity factors K; and Kj; according to Egs. (5) and (6). To solve
multiple crack problems, the present solution procedure of the fast
multipole BEM consists mainly of three stages, i.e., the initiation,
the iteration and the post-process stages.

3.1. Initiation stage

The purpose of initiation stage is to prepare all the date related
to the domain, constant elements, boundary conditions, maximum
number of constant elements allowed in a leaf, the numbers of
terms for multipole and local Taylor's expansion and GMRES
solution convergence tolerance, etc. For a given multiple-crack
problems, constant elements were applied to discretize the outer
boundaries of the domain and crack surfaces in the same way as in
conventional BEM.

3.2. Iteration stage

In this block, an iterative solver, GMRES is applied to solve the
system equation and use the FMM to accelerate the multiplied
vector in each step. Employing the GMRES iterative algorithm to
solve the equation system can remarkably enhance the convergent
rate compared with the conventional BEM because the entire

Data import from
BEM model

Construct the quad-
tree structure
Compute b vector

Apply GMRES
algorithm to solve
system matrix iteratively

No! Check crack
model again!

FMM BEM
applied ‘

Convergence? -

Fracture properties
Output SIF results R
Interactions among
i cracks
Crack propagation

Fig. 1. The flow chart of present solution procedures.

matrix does not need to be stored in the memory. If the GMRES
criterion is not satisfied or convergent, return to the initiation
stage and check the crack model. Otherwise, if the criterion is
satisfied, go to the next stage and then computing the correspond-
ing stress intensity factors using Eq. (5) or Eq. (6).

3.3. Post-process stage

The post processes can be carried out according to the require-
ments or interests as follows:

(1) Comparing the COD results from the proposed approach and
ANSYS software.

(2) Computing the fracture properties such as the maximum SIFs
and compared with the fracture toughness of materials or
critical stress intensity factor.

(3) Investigating the distribution of stress or strain fields near the
crack tip.

(4) Considering the interactions among cracks when the cracks
are much closed.

(5) Analyzing crack propagations once the stress intensity factors
are correctly computed.

The solution procedures of the proposed approach are sum-
marized in the flow chart as shown in Fig. 1.

4. Numerical examples

In this section, several numerical examples are presented to
demonstrate the accuracy and efficiency of the fast multipole BEM
for multiple crack problems. All the examples are chosen from
those papers in the open literature. In all BEM models, the outer
boundaries of the domain and crack surfaces are discretized by
constant elements. The outer boundaries are discretized by 400
constant elements and each crack surface is discretized by 360
constant elements. The numbers of terms for both multipole and
local expansions were set to 20, the maximum number of
elements in a leaf to 100, and the tolerance for convergence of
GMRES is chosen as 10~°. The non-dimensional stress intensity
factors K; and Kj of multiple crack problems in the finite and
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infinite domains can be solved and compared with those in
literatures [19-23].

4.1. Stress intensity factors in finite plates

4.1.1. Rectangular plate with center crack

The first example is probably the simplest problem fracture
mechanics, which is a rectangular plate contains a centered crack
with various lengths constructed for the purpose of illustrating the
computational procedure presented. The length of the crack is to
allocated at the center of a rectangular plate of 2b width and 2h
height. The width and the height of this plate are 2b=10 mm and
2h=20 mm, respectively. The material properties are E=1 Mpa
and Poisson's ratio v=0.3. The loads applied at upper and lower
edges are =1 Mpa as shown in Fig. 4. This example is analyzed
by three approaches, i.e., the presented fast multipole BEM, ANSYS
software and theoretical analysis. From the elastic theory, for a
centered crack problem, the COD can be analytically expressed as
follows:

2 [ () ®

Aux) = a

In ANSYS analysis, totally 4-node plane stress elements are
used. The COD results on the crack surface predicted by the three
numerical analyses, corresponding to the proposed approach,
ANSYS software and elastic theory are compared as shown in
Fig. 2. It can be seen from Fig. 2 that the fast multipole BEM results
agree well with ANSYS and analytical solutions. The maximum
error of fast multipole BEM and ANSYS is smaller than 2.0%, and
1.0% compared to analytical solutions, respectively.

It is important to point out that the relative errors of displace-
ment fields near the crack tip are generally large even when some
special crack tip elements are used. The behavior of the error
distribution of COD fields should be known for a reliable numerical
method. In general, the minimum error of COD at x=0 should be
always less than 0.05 mm which can be evaluated since the
analytical solutions are available for this simple problem. The
minimum error of COD of this study is 0.03312 mm, meeting the
requirement. The numerical results of COD error distributions
which are calculated by the fast multipole BEM are compared as
shown in Fig. 3, which illustrates the effectiveness of the proposed
approach.
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Fig. 2. Comparison of the CODs from present approach, ANSYS and elastic theory.
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Fig. 4. Normalized stress intensity factors of center cracked finite rectangular plate.

The calculated results of normalized mode-I SIFs are compared
with Tada [19] as shown in Fig. 4. A good agreement can be seen.
And Fig. 5 shows the relative errors of these two approaches. We
can find that the errors are relatively large when the crack tips are
close to the boundary of the plate. Therefore, more elements are
required near the crack tips and the influence of the plate width
should be considered.

4.1.2. Square plate with four cracks

To show the capability of the proposed approach in solving
the problem of arbitrary distributions of crack, a square plate with
four cracks is analyzed. The plate is subjected to the uniformly
distributed tension and the lengths of four cracks are same as
shown in Fig. 6. This example was previously analyzed by Chen
and Chen [20], in which used a special technique, that is, a dual
boundary element method (D-BEM) to solve multi-crack problems
[21]. In the proposed model, the outer boundaries are discretized
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Fig. 5. Relative errors of the calculated SIFs.
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Fig. 6. A finite plates with four cracks.
Table 1

Non-dimensional SIFs for a square plate with four cracks.

0(deg.) AF B, E C, D
Present Ref. [20]  Present Ref. [20]  Present Ref. [20]
0 1.10322  1.1051 1.08252  1.0848 1.20355  1.2011
30 0.81924  0.8208 0.84031  0.8467 1.21412 1.2119
45 0.53120 0.5354 0.56544  0.5703 1.20193  1.1999
60 0.25287  0.2533 0.27289  0.2741 117886  1.771
90 0 0 0.00238  0.0024 1.13314 1.1329

by using 400 constant elements, while each crack surface is
discretized by using 360 constant elements.

The results of the normalized stress intensity factors K; of three
cracks for the variation of angle @ are listed in Table 1. As mentioned

in [20], the geometry and loading are symmetric in the perpendi-
cular direction. So the SIFs of crack tips A and F should be the
same, which is also true for crack tips B and E, and C and D. It can
be seen from Table 1 that the computed results demonstrated the
above conclusions, and agree well with the results in [20], which
shows the accuracy of the proposed approach. More intuitive
figure for crack tip C is shown in Fig. 7.

4.1.3. Comparison of COD results for a square plate with 100
randomly distributed cracks

In this section, we calculated a model of a 2-D square plate with
100 randomly distributed cracks as shown in Fig. 8. The total
degree of freedoms is 36,400. In order to simplify this model, one
crack is put at the center of the square plate as a research object
(crack A), while other cracks are randomly distributed and any two
cracks do not intersect. To obtain the CODs of crack A, a special
region around the center crack is taken into consideration. The
technique used here is similar to the author's previous work [22],
all cracks are divided into two groups according to the non-
dimensional radial distances of cracks to the current crack A, i.e.
adjacent group and far-field group. The adjacent group contains
those cracks with a relatively small circle but has strong interac-
tions to the center crack, being placed in a circle in dashed-line
around the crack A. The others, the cracks of far-field group are
defined as those with relatively large distance located outside the

130 7 — K, by fast multipole BEM
O By W.H. Chen and T.C. Chen [20]
1.25 A
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2 =
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7

Fig. 7. Normalized stress intensity factors for the crack tip C.

Fig. 8. 100 randomly distributed cracks in a square plate.
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Fig. 9. Comparison of COD results for a finite plate with 100 random cracks.

dashed-line circle. In the ANSYS analysis, we neglect the interac-
tions of far-field group since the interactions are relatively small.
The CODs of the current crack Aare calculated and compared by
the fast multipole BEM and ANSYS as shown in Fig. 9. The total
CPU time on a desk PC is within minutes. It can be seen from Fig. 9
that the COD results of the fast multipole BEM agree well with the
results of ANSYS software, showing the fast multipole BEM with
constant elements is effective and efficient in dealing with multi-
ple random crack problems.

4.2. Stress intensity factors in infinite plates

4.2.1. An infinite plate with three collinear cracks

This example is an infinite plate in tension which contains
three collinear cracks with equal length with 2160 DOFs. The
computed results of normalized mode-I stress intensity factors are
presented in Fig. 10. It can be seen that the numerical results from
the proposed approach are in good agreement with the analytical
solutions of Refs. [19].

4.2.2. One row of periodical collinear cracks in horizontal line

The second example is one row of periodical collinear cracks in
an infinite plate under a far-field tension perpendicular to the
crack surfaces. The cracks are uniform distributed with equal size,
same orientation and spacing as shown in Fig. 11. In this model, up
to 501 cracks are taken into consideration instead of using an
infinite number of cracks. Here the total numbers of cracks are set
to be odd so that the middle crack can be centrally arranged along
the x axis so and the post process is more convenient. The
maximum total DOFs of this cracked model is over 180,000. The
numerical results of normalized mode-I stress intensity factors are
compared with Tada [19] as listed in Tables 2, and 3 shows the
absolute value of errors of SIFs. We can see that the numerical
results are gradually close to the analytical solutions and the
absolute errors decrease as the number of crack increase. In
general, the increase of the number of cracks can improve the
accuracy of the present results. However, the CPU time and
memory requirement will be long and large. At this point, an
appropriate truncated number N can stand for this class of

Pt oT
2.5 1 kiﬁ

201 e b

1/2
K /o(na)

By Tada [19]
Present results

Normalized stress intensity factors,

0.0 0.2 0.4 0.6 0.8 1.0
a/b

Fig. 10. Normalized stress intensity factors of three collinear cracks.

TR

o

Fig. 11. Periodical collinear cracks with equal size under uniform tension.

periodic collinear cracks problem, saving the CPU time and
memory requirement. In this manner, we can find an appropriate
truncated number of cracks N to simulate periodic collinear cracks
problem. It also can be seen that the absolute errors will exceed 1%
when the ratio a/b is over 0.7. This is because the interactions
among cracks will trend strong. Therefore, other technique can be
used to reduce the errors when the space among cracks is much
closed.

4.2.3. One column of periodical cracks in vertical line

The third example is a column of periodic cracks located
vertically inside an infinite plate under a far-field uniform tension
perpendicular to the crack surfaces. In this example, up to 101
cracks (total 36,360 DOFs). are taken into consideration instead of
using an infinite number of cracks The normalized mode-I stress
intensity factors are calculated by the proposed approach and
compared with Chen [23] in Fig. 12, showing a good agreement
between the present results and Chen's solutions. Correspond-
ingly, it also shows the effectiveness and efficiency of the fast
multipole BEM for solving this class of multiple cracks problem.
According to the authors' best knowledge, the interactions among
cracks which arranged in a vertical line are much stronger than
those of cracks arranged in a collinear row of horizontal line. In
this point, this class of crack problems should be studied in further
when the cracks are much closed.

4.2.4. Groups composed of two cracks with different lengths

The fourth example is several groups of cracks placed periodi-
cally inside an infinite plate under far-field uniform load as shown
in Fig. 13. Each group includes two cracks with unequal length: 2a
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Table 2

The normalized mode-I SIFs as a function of a/b for one row of periodical collinear cracks.

N alb
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
11 1.00389 1.01598 1.03751 1.07094 1.12094 1.19621 1.31586 1.52926 2.03154
21 1.00401 1.01646 1.03864 1.07307 1.12457 1.20215 1.32555 1.54597 2.06681
31 1.00405 1.01662 1.03902 1.07381 1.12585 1.20421 1.32892 1.55181 2.07908
41 1.00407 1.01671 1.03922 1.07418 1.12647 1.20526 1.33063 1.55477 2.08535
51 1.00408 1.01674 1.03934 1.07441 1.12687 1.20589 1.33167 1.55657 2.08915
61 1.00409 1.01679 1.03942 1.07456 112712 1.20631 1.33236 1.55778 2.09174
71 1.00409 1.01681 1.03948 1.07467 112731 1.20662 1.33286 1.55865 2.09353
81 1.00411 1.01683 1.03952 1.07475 1.12744 1.20684 1.33323 1.55932 2.09491
91 1.00411 1.01685 1.03955 1.07481 1.12755 1.20702 1.33352 1.55979 2.09599
101 1.00411 1.01686 1.03958 1.07486 1.12765 1.20716 1.33376 1.56021 2.09685
201 1.00412 1.01691 1.03969 1.07509 1.12803 1.20781 1.33481 1.56205 2.10075
301 1.00412 1.01693 1.03974 1.07517 1.12816 1.20802 1.33517 1.56266 2.10206
401 1.00412 1.01694 1.03976 1.07521 1.12823 1.20813 1.33534 1.56297 2.10271
501 1.00412 1.01694 1.03977 1.07523 1.12827 1.20819 1.33545 1.56316 2.10311
Tada [19] 1.00415 1.01698 1.03983 1.07533 1.12838 1.20847 1.33601 1.56497 2.11331
Table 3
The absolute errors of SIFs as a function of a/b using different numbers of cracks N.
N alb
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
11 2.6E—-4 1E-3 232E-3 439E-3 744E -3 1.25E-2 212E-2 3.57E-2 8.18E—-2
21 1E-4 52E-4 119E-3 2.26E-3 3.81E-3 6.32E-3 1.05E—-2 19E-2 4.65E—2
31 8E-5 3.6E—4 8.1E—4 1.52E-3 2.53E-3 4.26E-3 7.09E-3 1.32E-2 3.42E-2
41 8E-5 27E—-4 6.1E—4 1.15E-3 191E-3 3.21E-3 5.38E-3 1.02E-2 2.8E-2
51 7E-5 24E-4 49E-4 9.2E—-4 1.51E-3 2.58E-3 4.34E-3 84E-3 242E-2
61 6E—5 19E-4 41E-4 7.7E—4 1.26E-3 2.16E—-3 3.65E-3 719E-3 2.16E—2
71 6E—5 1.7E—4 3.5E—4 6.6E—4 1.07E-3 1.85E—-3 3.15E-3 6.32E-3 1.98E—-2
81 4E-5 1.5E—4 3.1E-4 5.8E—4 94E—-4 1.63E-3 2.78E-3 5.65E—3 1.84E-2
91 4E-5 1.3E-4 28E—-4 52E-4 83E—-4 145E-3 249E-3 5.18E-3 1.73E-2
101 4E-5 1.2E—-4 2.5E-4 47E—-4 73E—-4 1.31E-3 2.25E-3 4.76E—3 1.65E—2
201 3E-5 7E-5 14E-4 24E—-4 3.5E-4 6.6E—4 12E-3 292E-3 1.26E-2
301 3E-5 5E-5 9E-5 1.6E—4 22E-4 4.5E—-4 84E—-4 231E-3 113E-2
401 3E-5 4E-5 7E-5 1.2E-5 1.5E—-4 34E-4 6.7E—4 2E-3 1.06E—2
501 3E-5 4E-5 6E—5 1E-5 11E-4 2.8E—4 5.6E—4 1.81E-3 1.02E-2
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Fig. 12. Normalized stress intensity factors of column of periodical cracks.

and 2b, respectively. The horizontal distance between the two
cracks of each group is 0.5a, while the vertical distance is a
variable f. In this model, up to 13 groups are taken into considera-
tion with total 18,720 DOFs. The modes I and Il normalized stress
intensity factors are respectively calculated by the proposed

approaches can be seen, showing the effectiveness of the fast
multipole BEM in dealing with this kind of problem.

4.2.5. Double periodical collinear cracks

The last example considers an infinite plate containing double
periodical collinear cracks with equal length under a far-field
uniform tension. The number of rows is set to be an odd number
M and the geometrical center of the middle row is located at the
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center of x axis as shown in Fig. 16. The total number of cracks is
M x M. The normalized stress intensity factors of the central crack
at different number of rows M are calculated and compared with
those by Wang and Feng [24] as listed in Table 4. The absolute
errors of SIFs of some double periodical collinear cracks models
are listed in Table 5. It can be seen that the numerical results agree
well with analytical results and all the absolute value of errors are
less than 1%, which shows the effectiveness of the proposed
approach in dealing with double periodical collinear cracks
problem.

The total DOFs, GMRES iterations and memory requirements
of these models are listed in Table 6, respectively. It is easy to find
that with the increase of crack numbers, the GMRES iterations
increase steady. Also, the CPU time of different models, using the
desk-top computer Dell with Inter Core Dual processor, 4 gigabytes
of memory, 500 gigabytes hard drive and 2.4 GHz, are compared
with Dual-BEM (D-BEM) as listed in Table 7. It can be seen the CPU
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Fig. 16. Double periodical collinear cracks with equal length.

Table 4
The normalized SIFs of double periodical collinear cracks at different rows.

Total number h/d=0.5

of cracks N
Present Chen and Lin [23]
a/d=0.5 0.8 0.99 a/d=0.5 0.8 0.99
1x 101 1.12769 1.56025 6.37012 1.128379 1.564972 6.370240
7x7 0.95743 147969 6.36438 0.962046 1.480109 6.368981
9x9 0.96203 1.47788 6.36445 0.962046 1.480106 6.368907
11 x11 0.96204 1.47785 6.36437 0.962046 1.480104 6.368830
13 x 13 0.96204 1.47783 6.36431 0.962046 1.480101 6.368752
Table 5
Absolute errors of stress intensity factors.
Total number of cracks N ald
0.5 0.8 0.99
1x 101 6.0E—4 4.72E-3 1.2E-4
7x7 48E-3 419E-4 4.60E-3
9x9 1.7E-4 2.23E-3 4.457E-3
11 x11 1.7E-4 2.25E-3 446E-3
13x13 1.7E-4 227E-3 444E-3
Table 6

DOFs, iterations and memory requirements of the fast multipole BEM.

Total number of cracks N h/d=0.5, a/d=0.5

DOFs GMRES iterations Memory (Mb)
7x7 35,280 8 88.8
9x9 58,320 9 90.0
11 x11 87,120 9 91.5
13 x 13 121,680 9 934

time of the fast multipole BEM is larger than that of D-BEM when
the numbers of cracks are relatively small. However, the CPU times
of D-BEM will increase more quickly compared with fast multipole
BEM when the total number of cracks grows. According to the
author's knowledge, the calculation of fast multipole BEM has a
linear relationship with the DOF of the original problems, but the
slope of this linear relationship is large, which leading to the
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Table 7
Comparison of CPU times of the two approaches.

Total number of cracks N CPU time (s)
Fast multipole BEM D-BEM
7x7 189.182 62.790
9x9 326.978 227.449
11 x11 469.282 667.497
13x13 666.405 1690.458

advantage of the fast multipole BEM only can truly reflected in
large-scal multi-crack problems. It can be potentially concluded
that the fast multipole BEM is more efficient than D-BEM in
dealing with large-scale crack problems.

5. Conclusions and further extensions

A fast multipole BEM was applied to solve 2-D multiple crack
problems. A symmetric dual BIE formulation was employed and
constant elements were used to discretize the outer boundaries of
the domain and crack surfaces. There is no need to use any other
special crack-tip elements such as singular quarter-point elements
in the discretization near the crack tips. The effectiveness and
efficiency of the proposed approach were verified by computing
the SIFs in several numerical examples. Numerical results show
that the fast multipole BEM with constant elements is effective
and efficient for analyzing multiple cracks in both finite and
infinite domains.

Potential extensions include studies of the interactions among
cracks when they are much closer to each other, and crack
propagations based on the calculated stress intensity factors can
be considered. The 2-D work with the fast multipole BEM can also
be extended to cracks of various shapes and in 3-D models. Other
fast solution methods for the BEM, such as the adaptive cross
approximation method, can also be applied to study the multiple
crack problems.
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