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In this paper, the four integral identities satisfied by the fundamental solution for elasto-
static problems are reviewed and slightly different forms of the third and fourth identities
are presented. Two new identities, namely the fifth and sixth identities, are derived. These
integral identities can be used to develop weakly singular and nonsingular forms of the
boundary integral equations (BIEs) for elastostatic problems. They can also be employed
to show the nonuniqueness of the solution of the traction (hypersingular) BIE for an elas-
tic body on a multiconnected domain. This nonuniqueness is shown in a general setting
in this paper. It is shown that the displacement (singular) BIE does not allow any rigid-
body displacement terms, while the traction BIE can have arbitrary rigid-body transla-
tion and rotation terms, in the BIE solutions on the edge of a hole or surface of a void.
Therefore, the displacement solution from the traction BIE is not unique. A remedy to this
nonuniqueness solution problem with the traction BIE is proposed by adopting a dual
BIE formulation for problems with multiconnected domains. A few numerical examples
using the 2D elastostatic boundary element method for domains with holes are presented
to demonstrate the uniqueness properties of the displacement, traction and the dual BIE
solutions for multiconnected domain problems. [DOI: 10.1115/1.4023640]

Keywords: integral identities, fundamental solution, elastostatics, boundary integral
equation, boundary element method

1 Introduction

The boundary element method (BEM) has been applied for
solving elastostatic problems for almost five decades based on the
direct boundary integral equation (BIE) formulation [1]. Although
very attractive and successful in solving many elastostatic prob-
lems, especially with the recent advent of the fast solution meth-
ods [2], the BIE formulations for elastostatics suffer some defects
for certain problems. For example, for plane elasticity problems,
the displacement BIE has nonunique solutions for certain types of
domain [3]; the displacement BIE degenerates when applied to
domains containing cracks (see, e.g., Refs. [4,5]); and the traction
BIE has nonunique solutions on the edges of holes or surfaces of
voids in a multiconnected domain, which is the topic of this
paper.

For multiconnected domain elasticity and Stokes flow prob-
lems, it has been demonstrated that the traction or hypersingular
BIEs have nonunique solutions on the boundary of a hole or void
where no constraint is applied. That is, an arbitrary translation
and/or rotation term can be added to the solution of the displace-
ment on the boundary of the hole or void and the traction BIE so-
lution still holds. This is because of the properties of the
hypersingular kernels, or the identities satisfied by such kernels
[6–8]. This defect in the traction BIEs for multiconnected domains
was reported in Refs. [9,10] for elasticity problems, and in Refs.
[11,12] for Stokes flow problems. Special care or techniques were
also proposed in Refs. [9,10] to remedy this situation with the

traction BIE for multiconnected domain elasticity problems. For
Stokes flow problems, a dual BIE formulation using a linear com-
bination of the singular and hypersingular BIEs is suggested in
Refs. [11,12].

However, the above mentioned nonuniqueness problem of the
traction BIE solution has not been investigated in a general set-
ting, meaning that no paper has shown the nonuniqueness of the
traction BIE solution that can have both arbitrary constant and lin-
ear terms and for both 2D and 3D multiconnected domains. In this
paper, the issue of the nonunique solution with the direct BIE for-
mulation for elastostatic problems on multiconnected domains is
investigated using a general approach. To do this, two new inte-
gral identities for the fundamental solution of elastostatic prob-
lems are derived. Then, it is shown that the displacement BIE
solution does not admit constant and linear terms, while the trac-
tion BIE solution can have such terms and therefore is not unique
on the edge of a hole or surface of a void. These results are con-
sistent with those for the BIEs for multiconnected domain elastic-
ity problems. However, these results are derived in a systematic
manner and under general conditions.

The remaining part of this paper is organized as following. In
Sec. 2, the four integral identities are reviewed and new forms of
the third and fourth identities are presented. Two new identities
are derived which are named as the fifth and sixth identities. In
Sec. 3, the nonuniqueness issue of the solutions of the BIEs for
multiconnected domain problems is investigated using the derived
integral identities. A remedy to the nonuniqueness problem is pro-
posed using a dual BIE formulation. In Sec. 4, the matrix notation
is applied to further demonstrate the nonuniqueness of the traction
BIE solutions for domains with holes or voids. In Sec. 5, a few nu-
merical examples of 2D elastic bodies with holes solved using the
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BEM are presented to demonstrate the correctness of the dual BIE
approach for multiconnected domains. Section 6 concludes the
paper.

2 Identities for the Fundamental Solution

The stress component Rijkðx; yÞ at a field point y in the elasto-
static fundamental solution (Kelvin’s solution) satisfies the fol-
lowing governing equation:

Rijk;k ðx; yÞ þ dijdðx; yÞ ¼ 0; 8x; y 2 R2 or R3 (1)

where ðÞ;k ¼ @ðÞ=@yk, the first index i indicates the direction of a
unit concentrated force at the source point x, the Dirac-d function
dðx; yÞ represents the body force corresponding to this unit con-
centrated force, and R2 or R3 represents the 2D or 3D full space,
respectively.

The displacement component Uijðx; yÞ and traction component
Tijðx; yÞ (also called kernels) in the fundamental solution satisfy
the following integral identities (see Refs. [6–8] for derivations):

First identity:

ð
C

Tijðx; yÞdCðyÞ ¼
�dij; 8x 2 X

� 1

2
dij; 8x 2 C

0; 8x 2 E

8><
>: (2)

Second identity:ð
C

@Tijðx; yÞ
@xk

dCðyÞ ¼ 0; 8x 2 R2 or R3 (3)

Third identity:

Ejkpq

ð
C

@Uipðx; yÞ
@xl

nqðyÞdCðyÞ �
ð

C

@Tijðx; yÞ
@xl

ðyk � �ykÞdCðyÞ

¼

dijdkl; 8x 2 X
1

2
dijdkl; 8x 2 C

0; 8x 2 E

8>><
>>: (4)

Fourth identity:

Ejkpq

ð
C

Uipðx; yÞnqðyÞdCðyÞ �
ð

C
Tijðx; yÞðyk � �ykÞdCðyÞ

¼

dijðxk � �ykÞ; 8x 2 X
1

2
dijðxk � �ykÞ; 8x 2 C

0; 8x 2 E

8>><
>>: (5)

where C is a smooth closed contour (for 2D) or surface (for 3D),
X is the domain enclosed by C, E is the infinite domain outside C
(X [ C [ E ¼ R2 or R3), Eijkl is the Young’s modulus tensor, and
�yk is the coordinate of a fixed reference point y in space. Note that
in the third and fourth identities derived in Refs. [6–8], �yk ¼ xk,
which are special cases of identities [4] and [5]. The new forms of
the third and fourth identities in Refs. [4] and [5] will be conven-
ient when we prove the nonuniqueness of the traction BIE for
multiconnected domain problems.

All the above identities can be derived readily by integrating
governing Eq. (1) over the domain X in the following manner
[6–8]:ð

X
ðym � �ymÞa

@c

@xc
l

Rijk;k ðx; yÞ þ dijdðx; yÞ
� �

dXðyÞ ¼ 0;

8x; y 2 R2 or R3 (6)

for selected integers a and c and invoking the Gauss theorem.
Knowledge of the explicit expressions of the displacement and
traction kernels and the associated BIEs is not required in the de-
velopment of these identities, although they can also be derived
by imposing simple solutions to the BIEs [6–8,13–15]. It is also
noted that the second identity, Eq. (3), can be derived by taking
the derivative of the first identity, Eq. (2), and the third identity,
Eq. (4), can be obtained by taking the derivative of the fourth
identity, Eq. (5). These identities have physical meanings and can
be very convenient in deriving various weakly singular or nonsin-
gular forms of the BIEs for elasticity problems [6–8].

Two new identities can be derived readily from the above exist-
ing identities. Since the Young’s modulus tensor satisfies
Eijkl ¼ Ejikl ¼ Eijlk ¼ Eklij, we can switch the indices j and k in the
fourth identity, Eq. (5), and subtract the result from the original
one to obtain the following:

Fifth identity:ð
C

Tikðx; yÞðyj � �yjÞdCðyÞ �
ð

C
Tijðx; yÞðyk � �ykÞdCðyÞ

¼

dijðxk � �ykÞ � dikðxj � �yjÞ; 8x 2 X
1

2
dijðxk � �ykÞ � dikðxj � �yjÞ
� �

; 8x 2 C

0; 8x 2 E

8>><
>>: (7)

A special version of this identity was derived in Ref. [10] for the
2D case based on a physical argument (equilibrium of moments of
the traction) and with �yj ¼ 0.

Taking the derivative of the new identity, Eq. (7), with respec-
tive to xl, we obtain the following:

Sixth identity:ð
C

@Tikðx; yÞ
@xl

ðyj � �yjÞdCðyÞ �
ð

C

@Tijðx; yÞ
@xl

ðyk � �ykÞdCðyÞ

¼

dijdkl � dikdjl; 8x 2 X
1

2
dijdkl � dikdjl

� �
; 8x 2 C

0; 8x 2 E

8>><
>>: (8)

This new identity can also be derived from the third identity, Eq.
(4), by switching the indices j and k and subtracting the result
from the original one. The two new identities, Eqs. 7 and (8), will
be applied in the following section to prove the nonuniqueness of
the traction BIE for multiconnected domain problems.

3 Nonuniqueness of the Solution With the Traction

BIE for Multiconnected Domains

Consider an elastostatic problem on a multiconnected domain V
(Fig. 1). The displacement (singular) BIE is [1]

1

2
uiðxÞ ¼

ð
S

Uijðx; yÞtjðyÞ � Tijðx; yÞujðyÞ
� �

dSðyÞ; 8x 2 S (9)

where ui and ti are the displacement and traction on boundary S,
respectively. The body force is not considered and the boundary S
is assumed to be smooth in this paper, which will not alter the
conclusions. The traction (hypersingular) BIE is [12,16]

1

2
tiðxÞ¼

ð
S

Kijðx;yÞtjðyÞ�Hijðx;yÞujðyÞ
� �

dSðyÞ; 8x2 S (10)

where the two new kernels are given by

Kijðx;yÞ ¼ Eikpq
@Upjðx;yÞ

@xq
nkðxÞ; Hijðx;yÞ ¼ Eikpq

@Tpjðx;yÞ
@xq

nkðxÞ

(11)
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We now investigate the solutions of displacement BIE Eq. (9)
and traction BIE Eq. (10) for multiconnected domains (Fig. 1) to
see if the solutions are unique or not on the inner boundary (the
edge of a hole in 2D or surface of a void in 3D). In Fig. 1, So is
the outer boundary and Si is a typical inner boundary which is not
constrained.

Assume uiðyÞ is a solution to BIE Eq. (9), or BIE Eq. (10). We
consider the following field:

euiðyÞ ¼
uiðyÞ; y 2 So

uiðyÞ þ ci þ dijðyj � �yjÞ
� �

; y 2 Si

�
(12)

which is obtained by adding a constant solution ci and linear solu-
tion dijðyj � �yjÞ to uiðyÞ on the inner boundary Si. The constant so-
lution ci represents a rigid-body translation, while the linear term
dijðyj � �yjÞ can produce a constant strain field given by

�eij ¼
1

2
ðdij þ djiÞ (13)

The linear term dijðyj � �yjÞ can represent a rigid-body rotation
only if the following condition is satisfied:

dij ¼ �dji (14)

which ensures zero strain and stress arising from this linear term.
In the following, we assume that condition, Eq. (14), is satisfied.

We first investigate if the field in Eq. (12) (satisfying condition,
Eq. (14)) is also a solution of the displacement BIE, Eq. (9). To
do this, substituting euiðyÞ into displacement BIE, Eq. (9), with
x 2 So first, we have

1

2
uiðxÞ ¼

ð
So[Si

Uijðx; yÞtjðyÞ � Tijðx; yÞujðyÞ
� �

dSðyÞð
Si

�Tijðx; yÞ cj þ djkðyk � �ykÞ
� �� �

dSðyÞ; 8x 2 So

which is reduced to

0¼�cj

ð
Si

Tijðx;yÞdSðyÞ�djk

ð
Si

Tijðx;yÞðyk� �ykÞdSðyÞ; x2 So

(15)

by applying BIE Eq. (9) for uiðyÞ. The above equation is further
reduced to

� djk

ð
Si

Tijðx; yÞðyk � �ykÞdSðyÞ ¼ 0; x 2 So

for any values of cj, by using the first identity, Eq. (2), applied to
the domain enclosed by Si with x outside this domain and after
switching the direction of the normal on Si (Fig. 2). Note that
when the direction of the normal is reversed on Si (Fig. 2(b)),
which is required before we can apply the identities, Tijðx; yÞ
changes sign. We do not use a different symbol for normal n after
the direction is switched, in order to simplify the notation. Split-
ting the kernel in the integral in the above equation into two and
applying the condition in Eq. (14), we have

1

2
djk

ð
Si

Tikðx;yÞðyj� �yjÞ�Tijðx;yÞðyk� �ykÞ
� �

dSðyÞ¼ 0; x2 So

(16)

which is satisfied by the new fifth identity, Eq. (7), for any values
of djk.

Similarly, substituting euiðyÞ into displacement BIE Eq. (9) with
x 2 Si, we obtain

1

2
dij cjþdjkðxk� �ykÞ
� �

¼
ð

Si

�Tijðx;yÞ cjþdjkðyk� �ykÞ
� �� �

dSðyÞ;

x2 Si (17)

by applying BIE Eq. (9) for uiðyÞ. After reversing the direction of
the normal (Fig. 2(b)), this equation is changed to

cj
1

2
dij �

ð
Si

Tijðx;yÞdSðyÞ
� �

þ djk
1

2
dijðxk � �ykÞ

�

�
ð

Si

Tijðx;yÞðyk � �ykÞdSðyÞ� ¼ 0; x 2 Si

or

cj
1

2
dij �

ð
Si

Tijðx;yÞdSðyÞ
� �

þ djk
1

2
dijðxk � �ykÞ

�

þ1

2

ð
Si

Tikðx;yÞðyj � �yjÞ � Tijðx;yÞðyk � �ykÞ
� �

dSðyÞ
	
¼ 0; x 2 Si

by splitting the kernel in the second integral and applying the con-
dition in Eq. (14). Using the first identity, Eq. (2) and fifth iden-
tity, Eq. (7), we have from the above equation

cj
1

2
dijþ

1

2
dij

� �
þdjk

1

2
dijðxk��ykÞþ

1

4
dijðxk��ykÞ�dikðxj��yjÞ
� �� 	

¼0;

x2Si

or

ciþdikðxk��ykÞ¼0; x2Si (18)

by applying again the condition in Eq. (14). The above equation
cannot be satisfied with arbitrary values of ci; dik and xk, unless

Fig. 2 Reversing the direction of the normal on Si before
applying the identities

Fig. 1 A multiconnected domain V with outer boundary So and
inner boundary SiSo [ Si 5 S)
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ci ¼ 0 and dik ¼ 0. This shows that the displacement BIE solution
cannot admit any rigid-body translation or rotation terms on the
edge of a hole or surface of a void. Therefore, the displacement
BIE solution on the edge of a hole or the surface of a void is
unique for multiconnected domain problems.

Next, substituting euiðyÞ into traction BIE Eq. (10) with x 2 So,
we have

1

2
tiðxÞ ¼

ð
So[Si

Kijðx; yÞtjðyÞ � Hijðx; yÞujðyÞ
� �

dSðyÞð
Si

�Hijðx; yÞ cj þ djkðyk � �ykÞ
� �� �

dSðyÞ; 8x 2 So

which is reduced to

0¼�cj

ð
Si

Hijðx;yÞdSðyÞ�djk

ð
Si

Hijðx;yÞðyk� �ykÞdSðyÞ; x2 So

(19)

by applying BIE Eq. (10) for uiðyÞ. The above equation is further
reduced to

0 ¼ �djk

ð
Si

Hijðx; yÞðyk � �ykÞdSðyÞ; x 2 So

for any values of ci, by applying definition in Eq. (11) and the sec-
ond identity, Eq. (3) after switching the direction of the normal.
Applying the definition in Eq. (11), we can write the above equa-
tion as

0¼�EilpqnlðxÞdjk

ð
Si

@Tpjðx;yÞ
@xq

ðyk��ykÞdSðyÞ; x2So

or

0¼�1

2
EilpqnlðxÞdjk

ð
Si

@Tpjðx;yÞ
@xq

ðyk��ykÞ�
@Tpkðx;yÞ
@xq

ðyj��yjÞ
� �

dSðyÞ;

x2So

by splitting the kernel into two and applying the condition in Eq.
(14). This equation is satisfied for any values of djk, by using the
sixth identity, Eq. (8) after reversing the direction of normal n on
Si.

Similarly, substituting euiðyÞ into traction BIE Eq. (10) with
x 2 Si, we obtain

0¼�cj

ð
Si

Hijðx;yÞdSðyÞ�djk

ð
Si

Hijðx;yÞðyk� �ykÞdSðyÞ; x2 Si

(20)

by applying BIE Eq. (10) for uiðyÞ. The first integral vanishes for
any values of ci by applying the second identity Eq. (3) and the
above equation is reduced to

0¼�1

2
EilpqnlðxÞdjk

ð
Si

@Tpjðx;yÞ
@xq

ðyk��ykÞ�
@Tpkðx;yÞ
@xq

ðyj��yjÞ
� �

dSðyÞ;

x2Si (21)

as in the previous case. Note that reversing the normal of Si will
not change the sign of the right-hand side of Eq. (21). From the
sixth identity Eq. (8), the above expression is further reduced to

0 ¼ � 1

2
EilpqnlðxÞdjk

1

2
dpkdjq � dpjdkq


 �
; x 2 Si

or

0 ¼ � 1

2
EijkldklnjðxÞ; x 2 Si

(22)

which is satisfied for any values of djk satisfying condition Eq.
(14) (In fact, Eijkldkl is the stress field due to the rigid-body rota-
tion and is indeed zero). Therefore, we must conclude that the so-
lution of traction BIE Eq. (10) can admit arbitrary rigid-body
translation and rigid-body rotation terms on the edge of a hole or
surface of a void. That is, the solution of the traction BIE Eq. (10)
is not unique on the edge of a hole or the surface of a void in mul-
ticonnected domain problems.

If one applies a dual BIE formulation using a linear combina-
tion of the displacement BIE and traction BIE in the form

Displacement BIEþb� Traction BIE ¼ 0 (23)

where b is a coupling (or weighting) constant, then one arrives at
the following equation when collocating on the inner boundary Si:

ci þ dikðxk � �ykÞ ¼ �
1

2
bEijkldklnjðxÞ; x 2 Si (24)

which is a combination of the result in Eq. (18) for displacement
BIE Eq. (9) and the result in Eq. (22) for traction BIE Eq. (10).
Again, this equation is satisfied only when ci ¼ 0 and dik ¼ 0.
Therefore, the dual BIE does not allow the addition of any rigid-
body displacement to the solution on the edge of a hole or the surface
of a void. A discussion of the choice of the value for constant b is
provided in Sec. 5 where the numerical examples are presented.

The dual BIE is needed in cases when the elastic domain con-
tains both cracks (either open or closed) and holes or voids. The
use of either displacement BIE alone or the traction BIE alone
will be detrimental as they both have defects, although for differ-
ent reasons. The displacement BIE degenerates on the crack surfa-
ces, while the traction BIE fails on the edges of holes or surfaces
of voids. The dual BIE formulation as proposed in Eq. (23) can
remove both defects in the BIEs. The dual BIE formulation as
shown in Eq. (24) was originally proposed by Burton and Miller
[17] for removing the fictitious eigen frequencies in the BIEs for
solving Helmholtz equations in exterior domains, as in acoustic
wave problems [18–20]. It has also been found to be very effec-
tive and efficient (producing better conditioned BEM systems of
equations) for solving various potential, crack and Stokes flow
problems [4, 11,12, 21–24].

The defect related to the traction or hypersingular BIEs for mul-
ticonnected domains has been reported in Refs. [9,10] for elastic-
ity problems and in Refs. [11,12] for Stokes flow problems,
although it has not been proved in a general setting. In Ref. [9],
only the constant displacement term is dealt with and an integral
representation for the domain enclosed by the hole is applied to
determine the unknown constant displacement in the solution on
the edge of a hole for the original traction BIE for multidomain
problems. A few selected constraints on the edge of the hole are
also introduced in order to remove the rigid-body motion in the
solution of the traction BIE. In Ref. [10], both the constant and
linear terms are discussed, however, only for 2D cases as the inte-
gral identities applied are derived only for such cases. It is pro-
posed in Ref. [10] to apply the displacement BIE in the Galerkin
BEM, instead of the traction BIE, on the traction-free edge of a
hole, in order to avoid the nonuniqueness of the displacement so-
lution of the traction BIE. For Stokes flow problems, a dual BIE
formulation using a linear combination of the singular and hyper-
singular BIEs is suggested in Refs. [11,12]. However, the theoreti-
cal proof of the nonunique solution and reasoning of the remedy
are not provided in Refs. [11,12].

4 Matrix Interpretation of the Nonuniqueness of the

Solution of the Discretized Traction BIE for

Multiconnected Domains

In this section, we further demonstrate the nonuniqueness of the
traction BIE using the discretized or matrix equations. The non-
uniqueness of the solution of a discretized integral equation is
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indicated by the nonempty null space of the relevant influence
matrices. Denote the discretized systems of integral equations,
Eqs. (9) and (10), by

G½ � tf g ¼ T½ � uf g (25)

and

L½ � tf g ¼ M½ � uf g (26)

respectively. Consider first the case in which the domain contains
only one hole or void. By grouping the nodal displacements and
tractions of the outer and inner boundaries separately, system Eq.
(25) can be re-arranged as

Goo Goi

Gio Gii

� �
to

ti

� 	
Too T

oi

Tio Tii

� �
uo

ui

� 	
(27)

where the subscripts “o” and “i” refer to the outer and the inner
boundaries respectively. It is well known that for a Neumann
problem, the solution of Eq. (25) is not uniquely defined. Hence
matrix T½ � is singular. For 2D problems, T½ � should contain three
null vectors, corresponding to the three rigid-body modes of the
multiconnected domain. Similarly Too½ � is also singular with its
three null vectors being the three rigid-body modes of the solid
domain enclosed by the outer boundary. Tii½ �, on the other hand, is
nonsingular. One can regard it as the influence matrix resulting
from the discretized displacement BIE of an exterior domain out-
side the hole or void, which does not admit any rigid-body motion.
In Sec. 3, it is proved that the displacement BIE Eq. (9) does not
have a solution of which the inner hole undergoes a rigid-body
motion while the outer boundary remains stationary, i.e.,

uf g ¼ o

~ui

� 	

where ~ui represents the rigid-body mode of the inner hole. Such a
fact can also be explained by the fact that Tii½ � is nonsingular;
hence when it is multiplied with a rigid-body displacement vector,
a nonzero vector results, which is not admissible.

For Eq. (26), the situation is different. In addition to the three
physical rigid-body modes, M½ � has additional three null vectors cor-

responding to uf g ¼ o

~ui

� 	
. Again, Eq. (26) can be re-arranged as

Loo Loi

Lio Lii

� �
to

ti

� 	
¼ Moo Moi

Mio Mii

� �
uo

ui

� 	
(28)

Unlike Tii½ �, the matrix Mii½ � is singular and has three null vectors
described by ~ui based on the proof of Eq. (20). The singularity
stems from the nature of the kernel itself, and does not seem to
correspond to any physical mode of the problem. Moreover, the

Fig. 3 A square plate with one circular hole

Fig. 4 The last several singular values of the influence matrix T½ � and its submatrices. The sin-
gular values are labeled consecutively using integer numbers. Circles, squares, triangles and
stars represent the values obtained from meshes with 80, 160, 320, and 640 elements respec-
tively. With the mesh of 640 elements, the condition numbers of T½ �, Too½ �, Toi½ � and Tii½ � shown in
(a), (b), (c) and (d), respectively are 2.9 3 106, 1.8 3 106, 3.0 3 107 and 3.2.
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null space of the submatrix Moi½ � is also nonempty, containing the
three null vectors ~ui based on the proof of Eq. (19). With both
Mii½ � and Moi½ � being singular, it is not difficult to conclude that
M½ � is also singular and contains six null vectors.

For a general case in which the problem domain contains N
inner holes or voids, Eq. (26) can be expanded as

Loo Loi1 … LoiN

Li1o Li1i1 … Li1iN

..

. ..
. ..

.

LiNo LiN i1
… LiN iN

2
66664

3
77775

to

ti1

..

.

tiN

8>>>><
>>>>:

9>>>>=
>>>>;

¼

Moo Moi1 … MoiN

Mi1o Mi1i1 … MoiN

..

. ..
. ..

.

MiNo MiN i1 … MiN iN

2
66664

3
77775

uo

ui1

..

.

uiN

8>>>><
>>>>:

9>>>>=
>>>>;

(29)

where the subscript “ik; k ¼ 1; 2; � � �N” denotes the kth inner hole.
Based on the identities presented in Sec. 2, it can be easily shown
that

Moik½ � ~uikf g ¼ 0 (30)

and

Mijik

� �
~uikf g ¼ 0 (31)

where ~uikf g is the displacement vector corresponding to the rigid-
body mode of the kth inner hole and j; k ¼ 1; 2; � � �N. Hence, M½ �
has 3N þ 3 independent null vectors, of which three are the rigid-
body modes of the multiconnected domain. The remaining 3N
vectors, resulting from the properties of the kernel, can be
expressed as 0 0 � � � ~uik � � � 0f g, k ¼ 1; 2 � � �N.

5 Numerical Examples

In this section, several 2D examples are presented to demon-
strate the uniqueness properties of the displacement, traction and
dual BIE solutions. In all the cases, Young’s modulus is 227KPa
and Poisson’s ratio is 0.2. All boundary integral equations are
solved numerically using the collocation method with constant
elements. Evaluation of the influence matrices is performed ana-
lytically following the formulas provided in Ref. [12]. As men-
tioned in Sec. 4, the nonuniqueness of the solution of a discretized
integral equation is reflected in the null space of the relevant influ-
ence matrices, which is equivalent to the existence of zero singu-
lar values of the corresponding influence matrices. Therefore, the
null spaces of these matrices are examined via singular value
decomposition.

5.1 Example 1: A Square Plate With One Circular
Hole. As the first example, a square plate with a circular hole as
sketched in Fig. 3 is considered. The edge length of the square
plate is set to be 10 and the radius of the hole is 1. The influence
matrices T½ � and M½ � defined in Eqs. (25) and (26) are evaluated
and the singular values of these matrices and their submatrices are
examined. Four different mesh sizes corresponding to a total of
80, 160, 320, and 640 elements are employed. Figure 4 plots the
last several singular values of matrix T½ � and its submatrices Too½ �,
Toi½ � and Tii½ �. It is evident from these plots that both T½ � and Too½ �

have three near zero singular values, while Tii½ � has none, which
are consistent with the analysis provided in Sec. 4. The near zero
singular values decrease with the increased element numbers and
approach to zero when the mesh size approaches to zero. It is
interesting to note that the submatrix Toi½ � has many near zero sin-
gular values in addition to the three corresponding to the rigid-
body modes of the inner hole. In fact, the condition number of
Toi½ � is close to 3� 107, one order higher than that of T½ � and
Too½ �. Similar behavior has also been observed for Tio½ �. These

observations can be explained by considering first identity in Eq.
(2) for the traction T kernel.

Fig. 5 The last several singular values of the influence matrix M½ � and its submatrices. The sin-
gular values are labeled consecutively using integer numbers. Circles, squares, triangles and
stars represent the values obtained from meshes with 80, 160, 320, and 640 elements respec-
tively. With the mesh of 640 elements, the condition numbers of M½ �, Moo½ �, Moi½ � and Mii½ � shown in
(a), (b), (c) and (d), respectively are 3.0 3 104, 1.5 3 104, 5.8 3 107 and 7.4 3 103.
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The last several singular values of matrices M½ � and its sub-
matrices Moo½ �, Moi½ � and Mii½ � are plotted in Fig. 5. Similar to the
behavior of Too½ �, Moo½ � has three null vectors corresponding to
the rigid-body modes of the square plate. But unlike Tii½ � which is
nonsingular, Mii½ � has three zero singular values. As a conse-

quence, M½ � has six singular values as clearly indicated in Fig.
5(a). All these results agree very well with the theoretical predic-
tions presented in Secs. 3 and 4. The behavior of Moi½ � is similar
to that of Toi½ �. The condition number of Moi½ � is also on the order
of 107, much higher than that of M½ � and Mii½ �. This can be
explained by considering second identity in Eq. (3) for the H
kernel.

To further demonstrate the nonuniqueness of the traction BIE
solution, the deformation of a plate with a hole under a uniform
stretch of 0.01 applied on both the top and the bottom edges of the
plate as illustrated in Fig. 6 is calculated from both the displace-
ment BIE and traction BIE. The undeformed shape is indicated by
the solid circles and the stars represent the deformed shape
obtained from the displacement BIE. Both diamonds and squares
mark the two solutions obtained from the traction BIE with two
different mesh sizes, illustrating the nonuniqueness of the traction
BIE solution.

As suggested in Sec. 3, a remedy to the nonuniqueness problem
of the traction BIE is to employ a dual BIE formulation. We set
the weighting factors of the normalized displacement BIE and
traction BIE be 1 and b, respectively. The null space of the influ-
ence matrix, D½ � ¼ T½ � þ b h=Eð ÞM½ �, where h is the nominal mesh
size, of the dual BIE is examined for various values of b in the
range of 0 � b � 2. Figure 7 plots ten smallest singular values of
D½ � for a few selected weighting factors. Although theoretically

matrix D½ � only has three zero singular values for any b, due to nu-
merical errors, the performance of the hybrid scheme varies with
the choice of b. In some cases; for example, the case indicated in
Fig. 7(b), the fourth smallest singular value is very close to zero.
Hence, the performance of the dual BIE formulation may not be
as good as expected in those cases. To examine the accuracy of
the dual BIE formulation and the influence of the b value, the
plate problem with one hole is solved again using the dual BIE
formation with several different b values. The deformed shape of
the plate obtained from the dual BIE with b ¼ 1 is shown in Fig.
6 indicated by pentagons, which matches with the shape obtained
from the displacement BIE quite well. Table 1 lists the L2-norm
errors of the calculated displacements obtained from both the dis-
placement BIE and the dual BIE formulations at different mesh
sizes. Due to the lack of the analytic solution of the problem, the
benchmark solution is obtained using the displacement BIE
approach with a finer mesh of 2240 constant elements. Overall,
the accuracy of the dual BIE formulation is worse than that of the
displacement BIE formulation, and the weighting factor does has

Table 1 L2-norm errors in the simulated boundary displacements of the plate with one hole obtained from both the dual BIE and
the displacement BIE formulations

Number of elements Displacement BIE Dual BIE ðb ¼ 0:24Þ Dual BIE ðb ¼ 1:0Þ Dual BIE ðb ¼ 2:0Þ

140 0.0210941 0.0364847 0.0881613 0.0325696
280 0.0083812 0.0442276 0.0522068 0.0180375
560 0.0031254 0.0125011 0.0177214 0.0118584
1120 0.0009345 0.0094700 0.0066303 0.0192113

Fig. 6 The shapes of the plate before and after deformation. The
circles show the plate before deformation, and the stars and pen-
tagons represent the deformed shapes obtained from the dis-
placement BIE and dual BIE, respectively. The points marked as
diamonds and squares illustrate the two deformed shapes
obtained with two different meshes from the traction BIE.

Fig. 7 The effect of b on the performance of the dual BIE for-
mulation: the last ten singular values of D½ � at a few selected b
values

Fig. 8 A schematic of a plate with four circular holes
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an influence on the accuracy of the results. The case with b ¼ 1
performs the best, which is consistent with the singular values
plotted in Fig. 7.

5.2 Example 2: A Square Plate With Several Circular
Holes. To illustrate the correlation between the number of the
inner holes and the number of the null vectors of matrix M½ �,
square plates with two and four inner holes are considered. A
schematic of the plate with four circular holes is illustrated in Fig.
8. Figures 9 and 10 present the last several singular values of mat-
rices T½ � and M½ � obtained at different discretized levels for the
two cases. While the number of zero singular values of matrix T½ �
is always three regardless of the number of the inner holes, the
number of the null vectors of M½ � increases with the number of
the holes and clearly follows 3N þ 3 pattern, where N is the num-
ber of the inner holes, which is consistent with the analysis given
in Sec. 4.

6 Conclusion

The six integral identities, including the two derived in this pa-
per, satisfied by the fundamental solution for elastostatic prob-
lems, are employed to theoretically investigate the uniqueness of
the displacement and traction BIE solutions for multiconnected
domains in a general setting. It is shown both in the continuous
and discretized spaces that the displacement (singular) BIE does
not allow any rigid-body displacement terms, while the traction
BIE can have arbitrary rigid-body translation and rotation terms,
in the BIE solutions on the edge of a hole or the surface of a void.
Hence the displacement solution from the traction BIE is not
unique. The dual BIE formulation can theoretically remedy the
nonuniqueness problem of the traction BIE. The weighting factor
of the normalized traction BIE, however, has to be chosen care-

fully and need further investigation. It is demonstrated that a unit
weighting factor works very well for the examples studied.
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