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Abstract An adaptive fast multipole boundary element
method (FMBEM) for general three-dimensional (3-D) po-
tential problems is presented in this paper. This adaptive
FMBEM uses an adaptive tree structure that can balance the
multipole to local translations (M2L) and the direct evalu-
ations of the near-field integrals, and thus can reduce the
number of the more costly direct evaluations. Furthermore,
the coefficients used in the preconditioner for the iterative
solver (GMRES) are stored and used repeatedly in the di-
rect evaluations of the near-field contributions. In this way,
the computational efficiency of the adaptive FMBEM is im-
proved significantly. The adaptive FMBEM can be applied to
both the original FMBEM formulation and the new FMBEM
with diagonal translations. Several numerical examples are
presented to demonstrate the efficiency and accuracy of the
adaptive FMBEM for studying large-scale 3-D potential prob-
lems. The adaptive FMBEM is found to be about 50% faster
than the non-adaptive version of the new FMBEM in solv-
ing the model (with 558,000 elements) for porous materi-
als studied in this paper. The computational efficiencies and
accuracies of the FMBEM as compared with the finite ele-
ment method (FEM) are also studied using a heat-sink model.
It is found that the adaptive FMBEM is especially advanta-
geous in modeling problems with complicated domains for
which free meshes with much more finite elements would be
needed with the FEM.
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1 Introduction

The boundary element method (BEM) involves formation
of a dense system matrix and solution of the linear system
Aλ = b. Each coefficient Ai j in matrix A represents the inter-
action between source point i and field point j . Computing A
is a time consuming process in the BEM, which takes O(N 2)
operations (with N being the number of nodes/elements).
This process becomes a huge obstacle that limits the use of the
BEM. Solving the system of equations is another expensive
task, which requires O(N 3) operations with direct solvers.
Many works have been devoted in extending the applicabil-
ity of the BEM to large-scale problems with parallel com-
puting or sub-domain techniques. Still the BEM has been
restricted to solving relatively small-size problems with N
around 10,000 on a personal computer (PC), until the recent
development of the fast multipole method (FMM).

With the help of the FMM and iterative solvers such
as the generalized minimal residual method (GMRES), the
fast multipole BEM (FMBEM) is now capable of solving
large-scale problems on a PC in a reasonable amount of
time. The GMRES was originally developed in 1980s by
Saad and Schultz [1]. It is an iterative projection method de-
signed to solve large-scale and non-symmetrical linear sys-
tems Aλ = b. The FMM was first introduced by Rokhlin [2]
and Greengard [3, 4] in the 1980s to accelerate the evaluation
of interactions of large ensembles of particles. The FMM re-
duces the operation counts from O(N 2) to O(N ) for N -body
interaction problems. The FMBEM adopts the same mecha-
nism to accelerate the multiplication of system matrix A and
solution vector λ, where the element-to-element interactions
are replaced by box-to-box interactions with each box con-
taining a certain number of elements. Combining the GMRES
and FMM, the FMBEM can now solve large-scale problems,
for example, with N above one million using a mid-range
laptop PC within a few hours for 2-D potential problems
[5, 6].

The potential problem has been studied by many using
the FMBEM besides the original work by Rokhlin [2] and
Greengard [3, 4]. A comprehensive review of the FMBEM,
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including that for potential problems, can be found in Ref. [7].
Nishimura’s group [7–11] has done extensive research on the
development of the FMBEM to solve large-scale 3-D scalar
crack problems in both static and dynamic cases. Chew’s
group (see, e.g., Ref. [12] and the references therein) has
been modeling electromagnetic wave scatterings using the
FMBEM, and have obtained remarkable results. For example,
they have demonstrated that the scattering data from a full air-
craft model at GHz frequencies can be obtained using several
millions of boundary elements and within a few hours. Most
recently, very large 3-D BEM models with more than 28 mil-
lion elements have been solved successfully by the FMBEM
within hours and with moderate computing resources [13, 14]
in modeling composite materials.

However, there are still rooms for improvements with the
FMBEM regarding the solution efficiencies. The FMM can
significantly accelerate the BEM solutions, especially for 2-D
problems. For example, if the elements are uniformly dis-
tributed in a 2-D domain, the FMBEM takes approximately
29(N/s)p2 +2N p+9Ns [15] operations to finish the multi-
plication of matrix A and vector λ, where p is the expansion
order, and s the number of elements per box (see Sect. 3.2 for
the definition of a “box”) . Choosing s = p, the total oper-
ation count for 2-D yields 40N p. While for 3-D problems,
the FMM is considered less efficient than in 2-D problems.
The operation count to perform the multiplication is approxi-
mately 2N p2+189(N/s)p4+27Ns [15]. Choosing s = 2p2,
the operation count yields 150N p2. To achieve high accura-
cies, the expansion order p has to be high, and the p2 term
is hard to be ignored.

To reduce the operation count for 3-D problems, White
and Head-Gordon [16] came up with the idea of rotating the
coordinate system based on the observation that the opera-
tions count for spherical harmonic expansion translations in
the z direction is 3p3, instead of p4. The total operations
count is thus reduced to 2N p2 +189(N/s)3p3 +27Ns [15],
if one aligns the vector connecting the source expansion cen-
ter and the target expansion center with the z coordinate. The
implementation of this scheme requires minor modifications
on the standard FMM scheme and no additional approxima-
tion is made, so the error bound for the standard FMM is
retained.

Greengard and Rokhlin [17] introduced a new version
of the FMM for the 3-D Laplace equation that reduces the
operation count to 2N p2 + (N/s) (20p3 + 189p2) + 27Ns
[15]. This new version of the FMM has been implemented by
Nishimura’s group [8] for 3-D crack problems and recently
by Yao’s group [18] for 3-D elasticity problems. Cheng et al.
[19] further introduced an adaptive algorithm to implement
the new version of the FMM. However, this adaptive algo-
rithm is only for the evaluation of pair-wise interactions of
large ensembles of particles (some errors are found in this
algorithm, which will be discussed later in this paper). To the
best knowledge of the authors, the adaptive algorithm has not
been implemented for the FMM combined with the BEM.

This paper introduces an adaptive FMBEM algorithm to
solve large-scale general 3-D potential problems. It adopts

and improves the adaptive FMM algorithm introduced by
Cheng et al. [19] into the FMBEM implementation. The adap-
tive algorithm can be applied not only to the new version of
the FMBEM with diagonal translation, but also to the original
FMBEM. Some new improvements regarding the integra-
tion of the FMM and GMRES are employed. The FMBEM
implemented in this paper employs the new version of the
FMBEM [17] and preconditioned GMRES to achieve better
performance. The coefficients used in the preconditioner for
GMRES are stored and used repeatedly in the direct eval-
uations of the near-field contributions. Thus, computational
efficiency in the FMBEM solution is greatly improved.

This paper is organized as follows: the basic FMBEM for-
mulation is introduced in Sect. 2. The adaptive FMBEM algo-
rithm is presented in Sect. 3. Section 4 presents the numerical
results, and Sect. 5 concludes the paper with further discus-
sions.

2 Formulation of the FMBEM

2.1 Conventional BEM formulation

The boundary integral equation (BIE) for the potential prob-
lem is [20, 21]:

C(x)φ(x)=
∫

S

[
G(x, y)q(y)−F(x, y)φ(y)

]
dS(y), ∀x ∈ S,

(1)

where the coefficient C(x) = 1/2 if the boundary S is smooth
at the source point x, G(x, y) is the Green’s function given
by:

G(x, y) = 1

4πr
, with r = |x − y|, (2)

for 3-D problems and

F(x, y) = ∂G(x, y)

∂n(y)
= − 1

4πr2

∂r

∂n(y)
, (3)

with n being the outward normal at the field point y.
Using constant elements [20], the corresponding discret-

ized form of BIE (1) is:
N∑

j=1

fi jφ j =
N∑

j=1

gi j q j , for i = 1, 2, . . . , N , (4)

where

gi j =
∫

�S j

G(xi , y)dS(y), (5)

fi j = 1

2
δi j +

∫

�S j

F(xi , y)dS(y). (6)

with �S j being an element. Rearranging Eq. (4) with all the
unknown boundary values in vector λ leads to:

Aλ = b, (7)
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where A is the coefficient matrix which needs O(N 2) oper-
ations in the conventional BEM and vector b is the known
right-hand side vector which also needs O(N 2) operations
to compute.

2.2 Basic FMM formulas

In this section, the basic FMM formulas are listed for conve-
nience, which will be used to implement the adaptive
FMBEM. Most of the formulas in this section can be found
in Ref. [22].

Fundamental solution G in Eq. (2) can be expanded with
a series expansion as:

G(x, y) = 1

4π |x − y|
∼= 1

4π

p∑
n=0

n∑
m=−n

Sn,m(x, yc)

×Rn,m(y, yc), |x − yc| > |y − yc| , (8)
where yc is the expansion center, p the number of expansion
terms, and ( ) indicates the complex conjugate. The functions
Sn,m and Rn,m are solid harmonic functions [22].

The kernel F in Eq. (3) can also be expanded as:

F(x, y) = ∂G(x, y)

∂n(y)
∼= 1

4π

p∑
n=0

n∑
m=−n

Sn,m(x, yc)

×∂ Rn,m(y, yc)

∂n(y)
, |x − yc| > |y − yc| . (9)

Applying expansions in Eqs. (8) and (9), one can evaluate
the integrals in Eqs. (5) and (6) on a collection of elements
within S0 (a subset of S) as follows:∫

S0

G(x, y)q(y)dS(y) ∼= 1

4π

p∑
n=0

n∑
m=−n

Sn,m(x, yc)

×Mn,m(yc), |x − yc| > |y − yc| , (10)
∫

S0

F(x, y)φ(y)dS(y) ∼= 1

4π

p∑
n=0

n∑
m=−n

Sn,m(x, yc)

×M̃n,m(yc) |x − yc| > |y − yc| , (11)

where Mn,m and M̃n,m are multipole moments centered at yc
and defined as:

Mn,m(yc) =
∫

S0

Rn,m(y, yc)q(y)dS(y), (12)

M̃n,m(yc) =
∫

S0

∂ Rn,m(y, yc)

∂n(y)
φ(y)dS(y). (13)

The multipole expansion center can be moved from yc to yc′
according to the following formula (M2M translation):

Mn,m(yc′) =
∫

S0

Rn,m(y, yc′)q(y)dS(y)

=
n∑

n′=0

n′∑
m′=−n′

Rn′,m′(yc′, yc)Mn−n′,m−m′(yc).

(14)

Similarly for M̃n,m .
In the original FMM formulation, the multipole moments

are translated to the local expansion coefficients using the fol-
lowing formula (M2L translation):

Ln,m(xl) ∼=
p∑

n′=0

n′∑
m′=−n′

(−1)n Sn+n′,m+m′(xl, yc)

×Mn′,m′(yc), |yc − xl| > |x − xl| . (15)
In the new FMM formulations [17], the multipole expan-

sion is translated to local expansion via the exponential expan-
sion, where the translation operators become diagonal. For
example, integrals in Eq. (5) can be expanded using the fol-
lowing exponential expansions:∫

S0

G(x, y)q(y)d S(y) ∼= 1

4π

S(ε)∑
k=0

Mk∑
j=1

Wk, j

× exp

{
−λk

d
(y3 − x3)

}
exp

{
i
λk

d

(
(y1 − x1) cos(α j,k)

+(y2 − x2) sin(α j,k)
) }

(16)

where S(ε) can be determined by the required accuracy (with
tolerance ε), α j,k = 2π j/Mk , and d is the cube length. The
vector −→xy must satisfy the following inequality to ensure
Eq. (16) is valid:

d ≤ y3 − x3 ≤ 4d, 0 ≤
√

(y1 − x1)2 + (y2 − x2)2

≤ 4
√

2d.

The multipole expansion is translated to exponential expan-
sion using the following formula (M2X translation):

Wk, j (yc) = ωk/d

Mk

p∑
m=−n

(−i)|m|eimα j,k

p∑
n=|m|

Mm
n (yc)√

(n − m)!(n + m)! (λk/d)n, (17)

where the values for the weight ωk , the node λk , and integer
array Mk can be found in Ref. [19].

The exponential expansion center is then shifted from
point yc to point xl (X2X translation) by:

Vk, j (xl) = Wk, j (yc) exp

{
−λk

d
(ycxl)3

}

× exp

{
i
λk

d

(
(ycxl)1 cos(α j,k) + (ycxl)2 sin(α j,k)

)}
.

(18)
And the coefficients for local expansion centered at xl can be
obtained from the exponential expansion (X2L translation):

Lm
n (xl) = (−i)|m|

√
(n − m)!(n + m)!

S(ε)∑
k=1

(
λk

d

)n

Mk∑
j=1

Vk, j (xl)e
imα. (19)
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Fig. 1 M2X, X2X, X2L, and M2L translations
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1:  List 1, Direct evaluations (Eqs. (5, 6)) 
 2:  List 2, M2X, X2X, X2L translations (Eqs (17-19)) 

3:  List 3, M2L translations (Eq. (15)) 

4:  List 4, Direct evaluations (Eqs. (5, 6)) 

f:   far field boxes 
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Fig. 2 Four lists of boxes associated with box b

To make the above translations (17), (18), and (19) valid, the
inequality d ≤ y3 − x3 ≤ 4d must be satisfied, which means
point yc is above point xl. If point yc is not above point xl, the
multipole moments need to be rotated to make this assump-
tion valid. After M2X, X2X and X2L translations, the local
coefficients need to be rotated back. The direct M2L transla-
tions from yc to xl and translations via exponential expansions
are illustrated in Fig. 1.

The local expansion center can be shifted from xl to xl′
using the following L2L formula:

Ln,m(xl′) ∼=
p∑

n′=0

n′∑
m′=−n

Rn′−n,m′−m(xl′, xl)Ln′,m′(xl). (20)

Finally each term in Eq. (4) can be evaluated using the local
expansion:

N∑
j=1

fi jφ j or gi j q j

= 1

4π

∞∑
n=0

n∑
m=−n

Rn,m(xi , xl)Ln,m(xl), (21)

for far-field contributions.
In the following section, we present a new adaptive algo-

rithm to implement the FMBEM for general 3-D potential
problems, which can further improve the efficiency of the
FMBEM as compared with the current approaches (the stan-
dard non-adaptive FMBEM) reported in the literature.
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3 The adaptive algorithm

The adaptive algorithm for accelerating the FMBEM for 3-D
potential problems is described in the following subsections.
The proposed adaptive algorithm corrects some errors in
some special cases in the original algorithm given by Cheng
et al. [19] for particle-interaction problems. Differences be-
tween the adaptive algorithm and non-adaptive algorithm will
be addressed.

3.1 Initialization

Choose the number of expansion terms based on the required
precision. Select the maximum number of elements allowed
in a childless box (to be called a leaf).

3.2 Tree structure

In the adaptive algorithm, an adaptive hierarchical tree of
boxes is constructed first by dividing the problem domain
into smaller and smaller sub-domains. On the 0th level, we
have a single box containing the entire domain. Boxes on
level l + 1 are obtained by subdividing each box on level l
into eight equal sized child boxes, then trim off empty child
boxes. On the same level, two boxes are said to be colleagues
if they share at least a boundary point (a box is considered a
colleague of itself), otherwise, they are said to be well sep-
arated. Every box b starting from level 2 has an interaction
list, consisting of the children of colleagues of b’s parent box,
which are well separated from b.

To implement the adaptive algorithm, the following four
lists associated with box b on level l are defined (as illustrated
in Fig. 2):

• List 1 consists all childless boxes adjacent to childless
box b. If b is a parent box, its list 1 is empty.

• List 2 is the interaction list of box b.
• List 3 includes all boxes c on level l + 1 that are not adja-

cent to childless box b but separated from b with a box the
same size as c. List 3 also includes all childless boxes on
level l − 1 that are not adjacent to b ( b does not have to
be childless) but are separated from b with a box the same
size as b.

• List 4 consists of all boxes c above level l + 1 that are not
adjacent to childless box b but separated from b with a box
the same size as c. List 4 also includes all childless boxes
c under level l − 1 that are not adjacent to b ( b does not
have to be childless) but are separated from b with a box
the same size as b.

In the non-adaptive FMBEM algorithm, only two lists
are defined. If b is a leaf, list 1 contains all same level boxes
adjacent to b. If b is not a leaf, list 1 contains all the same
level childless boxes adjacent to b. List 2 is the interaction
list of box b.

Fig. 3 The Uplist (blue) and Downlist (green) of box b (red)

To perform M2X and X2L translations in the new FMM,
list 2 needs to be further divided into six sub-lists associated
with six coordinate directions:

• Uplist contains all boxes located above b(z > zb).
• Downlist contains all boxes lie below b(z < zb).
• Northlist contains boxes c with yc > yb except boxes in

the up and down lists.
• Southlist contains boxes c with yc < yb except boxes in

the up and down lists.
• Eastlist contains boxes c with xc > xb except boxes in the

up, down, north, and south lists.
• Westlist contains boxes c with xc < xb except boxes in the

up, down, north and south lists.

A general case of the Uplist and Downlist of box b is
shown in Fig. 3.

3.3 Upward pass

For each childless box b, calculate multipole moments at its
center from all elements in b using Eqs. (12) and (13). Use
M2M (14) to translate moments from b’s center to its par-
ent’s center. After this step, a pth-order multipole expansion
is formed for each box b at its center, representing the con-
tribution from all the elements in box b to elements far away
from b. Non-adaptive algorithm has the same upward pass as
the adaptive algorithm.

3.4 Downward pass

Starting from level 2 to the lowest level:

Step A

(1) For each box b on level l, use direct M2L (Eq. (15)) to
translate the multipole moments of list 3 boxes to the
local coefficients of b.



686 L. Shen, Y.J. Liu

1.00E-02

1.00E-01

1.00E+00

1.00E+01 1.00E+02 1.00E+03 1.00E+04
number of elements

er
ro

r

conventional BEM
adaptive FMBEM
non-adaptive FMBEM
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Fig. 5 Comparison of time/iteration between adaptive and non-adaptive FMBEM for the porous models

(2) For each box c on level l, convert the multipole moments
of c to the local coefficients of box b in list 2 of c using
M2X, X2X, X2L (Eqs. (17), (18), and (19)).

The adaptive algorithm given in Ref. [19] groups same set
of boxes into different lists 3 and 4. It selects M2L (Eq. (15))
or direct evaluation (Eqs. (5) and (6)) for these boxes based
on the number of charges (elements) in box b. However, when
dealing with list 4 boxes defined in this paper, the distance
between collocation point x and b’s center xl can be either
very close to or larger than the distance between list 4 box’s
center yc and b’s center xl, which can make the M2L trans-
lation (Eq. (15)) inaccurate or invalid. The result will not
converge in the invalid cases using the original adaptive algo-
rithm.

In the direct evaluation (Eqs. (5) and (6)), expensive ana-
lytical or numerical integrations are involved, which means
M2L (Eq. (15)) is often faster than the direct evaluation.

Therefore, the new version of the adaptive algorithm in this
current paper compares the location of boxes and chooses the
M2L translation whenever possible.

Step B Translate local coefficients of bi to the local coeffi-
cients of bi ’s children using L2L translation (Eq. (20)).

In the non-adaptive algorithm, only Step A (2) and Step
B are performed.
After downward pass, local coefficients for each leaf are
calculated.

3.5 Evaluation of gi j q j or fi jφ j

For each leaf bi , both non-adaptive and adaptive algorithm
calculate gi j q j and fi jφ j for each collocation point xi from
local expansion of bi using Eq. (21). Add direct evaluation
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(Eqs. (5) and (6)) of gi j q j and fi jφ j for j elements in bi ’s list
1 boxes. The adaptive algorithm also performs direct evalu-
ation (Eqs. (5) and (6)) of gi j q j and fi jφ j for j elements in
bi ’s list 4 boxes.

3.6 Solution

Use iterative solver GMRES (http://www.netlib.org) to solve
the Eq. (7), where b and Aλ are calculated in upward and
downward pass. Initially, λ is chosen to be a zero vector. Cal-
culate Aλ iteratively with updated λ vector until the residue
reaches an acceptable tolerance.

A block diagonal matrix is used as the precondition-
er according to Nishida and Hayami [23] to achieve faster
convergences. The entries in the preconditioner are the coeffi-
cients directly evaluated by Eqs. (5) and (6). The precondi-
tioner will be decomposed into a lower triangular matrix and
an upper triangular matrix (LU decomposition) at the begin-
ning of the solution process. To avoid direct evaluations of
these coefficients again in the iterations, one can retrieve the
coefficients from the stored LU decomposition using the fol-
lowing relations:

Ai j = Li1U1 j + Li2U2 j + · · · + LiiUi j , i < j,
Ai j = Li1U1 j + Li2U2 j + · · · + LiiU j j , i = j,
Ai j = Li1U1 j + Li2U2 j + · · · + Li jU j j , i > j,

(22)

where L and U are the lower triangular matrix and upper
triangular matrix, respectively.

4 Numerical results

The new adaptive FMBEM algorithm has been implemented
in Fortran 90, and tested using several examples. All mod-
els are meshed with triangular constant elements. Analyti-
cal integrations (Eqs. (5) and (6)) are used, so that singular
and nearly singular difficulties are calculated exactly. 3 × 3
quadrature points are used in the calculations of the multipole
moments in Eqs. (12) and (13). In the FMM implementation,
we choose eight terms in the multipole, local, and exponen-
tial expansions, and a maximum of 100 elements in a leaf.
Tolerance for the iterative solver is 10−6 . The first two mod-
els are run on a laptop computer with a 1.6 GHz CPU and
512 MB memory.

4.1 A cube with linear temperature distribution

A unit cube (−0.5 ≤ x, y, z ≤ 0.5) is used as the first exam-
ple to verify the accuracy of the new FMBEM with the adap-
tive algorithm. The heat conduction in the cube is studied
with the following boundary conditions:

φ = 0 at x = −0.5, φ = 1 at x = 0.5,

and q = 0 on all other surfaces .

The problem is solved by the conventional BEM, adaptive
FMBEM, and non-adaptive FMBEM (both the adaptive and

non-adaptive FMBEM’s use the new formulas with diagonal
translations, Eq. (18)). Figure 4 shows the L2-norm errors
of these three methods. All three methods converge quickly.
The L2-norm error differences between FMBEM and BEM
are small and negligible. The adaptive FMBEM has the same
accuracy as the non-adaptive FMBEM, and both are slightly
less accurate than the conventional BEM for larger models
because of the truncation error introduced in the multipole
moment expansion.

4.2 Porous material models

Porous material models are used in the second example. One
major advantage of the BEM over the finite element method
(FEM) is that it can handle complex geometries easily due
to its boundary discretization features. Porous materials can
have very complicated geometries that require large numbers
of elements to model using either the BEM or FEM. Thus, the
FMBEM is very attractive in the modeling of porous mate-
rials regarding both modeling and solution efficiencies. The
main purpose of this example is to compare the performance
of the adaptive FMBEM with the non-adaptive version.

The porous model has a dimension L ×L ×L , containing
L × L × L randomly distributed spherical voids of the same
size (radius = 0.3), where L has the value from 1 to 10 in
different models. The number of elements ranges from 828
(for a one-void block) to 558,000 (for a 1,000-void block)
accordingly. All the models are subject to the same boundary
conditions:

φ = ±L/2 at x = ±L/2

and q = 0 on all other surfaces,

where origin of the coordinate system is located at the center
of the block.

Fig. 6 A porous block with 1,000 spherical voids
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Fig. 7 Contour plot of the computed potential (temperature) for the porous block model

Fig. 8 Contour plot of the computed normal derivative of the potential (heat flux) for the porous block model

Figure 5 compares the performance between the non-
adaptive FMBEM and the adaptive FMBEM (both use the
new formulas with diagonal translations, Eqs. (17), (18)

and (19)). It is shown that the adaptive FMBEM runs much
faster than the non-adaptive FMBEM. For the largest model
with 558,000 elements, the adaptive FMBEM takes 878 s per
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Fig. 9 Total CPU time of the adaptive FMBEM with or without saving the coefficients

iteration, while the non-adaptive version takes 1,375 s per
iteration. The adaptive FMBEM is about 56% faster than the
non-adaptive FMBEM. If the element number increases and
the geometry become more complex, the adaptive algorithm
is expected to be even more efficient than the non-adaptive
version.

Figure 6 shows the BEM model containing 1,000 voids.
Figures 7 and 8 show the contour plots of the results for
the same porous block. The analytical solution for the same
block without the voids is φ(x, y, z) = x and thus the range
of φ should be: −5 ≤ φ ≤ 5. In Fig. 7, which shows the
potential field for the block with the voids, the overall range
of the potential is slightly outside of −5 ≤ φ ≤ 5, while in
Fig. 8, the normal derivative of the potential (flux) has val-
ues slightly outside the range −1 ≤ q ≤ 1. These results
show subtle effects of the voids on the thermal property of
the porous material.

The FMBEM can run even faster in the expenses of more
memory space. The adaptive FMBEM can store coefficients
calculated in the direct evaluation, and retrieve the coeffi-
cients in the iterative solution process, thus direct evalua-
tion times are reduced. Figure 9 compares the CPU time of
adaptive FMBEM with and without storing the coefficients.
The improvement in the CPU time is roughly 40% when the
coefficients are saved. However, such improvements largely
depend on the available memory size of the computer.

4.3 A heat-sink model

A heat-sink is modeled next using both the FEM (ANSYS)
and the developed adaptive FMBEM to further verify the
efficiency of the FMBEM code. This example is intended to
investigate both the modeling and solution efficiencies of the

FEM and FMBEM for solving practical engineering prob-
lems. The heat-sink model is taken from Ref. [24]. A given
temperature field (φ = 120) is specified on the bottom sur-
face and a heat flux condition (∂φ/∂n = 0.2) is specified on
all the other surfaces. The ANSYS mesh is shown in Fig. 10a,
where 127,149 nodes were used with the 20-node brick ele-
ments. The mesh was obtained by extruding the cross-section
so that a mapped mesh was obtained. Another larger ANSYS
model with 10-node tetrahedron elements were used in a free
mesh, where more than 300,000 nodes were used. The BEM
mesh used the same element pattern on the surfaces as shown
in Fig. 10a, where each rectangular surface area was divided
into two triangular area elements. There are 34,616 nodes in
this BEM model.

Figure 10b shows the contour plot of the temperature
determined by using ANSYS, while Fig. 10c shows that by
the FMBEM. The two results are very close (with the differ-
ence in the calculated minimum temperatures equal to 0.67%)
and deemed reasonable based on the applied boundary condi-
tions. On a 2.4 GHz laptop PC, the FMBEM code used 8 min
with a tolerance of 10−3 to calculate the unknown boundary
values, while the ANSYS used 1 min for the 20-node brick
element model and more than 20 min for the 10-node tetrahe-
dron element model (the two FEM results are the same within
the first three significant digits). The larger FEM model may
be needed when the heat-sink has more geometric features,
such as cooling holes. In addition, meshing the volume us-
ing either mapped or free meshes is significantly more time
consuming than meshing the surfaces using the BEM. Thus,
combining the advantages in the modeling stage for more
complicated geometries, the developed FMBEM approach
seems to be a very attractive alternative. However, for mod-
els with relatively simple geometries where mapped FEM
meshes can be obtained readily, the FEM seems to be still
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Fig. 10 Comparison of the FMBEM and FEM for analyzing a heat-sink model

faster than the FMBEM with the same accuracy. Further
investigations of the FEM and FMBEM for analyzing large-
scale realistic engineering problems need to be conducted.

5 Discussions

An adaptive FMBEM has been developed for 3-D potential
problems based on the adaptive algorithm originally pro-
posed by Cheng et al. [19] for the particle-interaction sim-
ulations. Some corrections in the original algorithm have
been made. The overall acceleration with the new adaptive
FMBEM is about 50% over the non-adaptive FMBEM when

both the FMBEMs use the diagonal translations (the new
FMBEM).

The FMM and GMRES are integrated more closely in
this adaptive FMBEM. The coefficients initially stored in the
preconditioner for GMRES are reused to calculate Aλ in the
direct evaluation of the coefficients in the downward pass, so
that there is no need to directly evaluate those coefficients
repeatedly in each iteration.

In the numerical examples, constant triangular elements
are chosen to discretize the BEM models. The singular and
nearly singular integrals do not pose any problems because
all the integrals can be evaluated analytically with the con-
stant elements. When dealing with higher-order elements
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where analytical integrations cannot be performed, the adap-
tive algorithm can further improve the performance of the
FMBEM, because it can avoid the many expensive numer-
ical integrations in the direct evaluation by using the M2L
translations.

The present adaptive algorithm can be readily extended
to other FMBEM applications, including 3-D elastostatic,
acoustic, and elastodynamic problems. The adaptive algo-
rithm can also be applied to other fast methods, such as the
fast mesh-free boundary node method [25] and the fast mul-
tipole accelerated method of fundamental solutions [26].
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