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Abstract
The behavior of an elastic body with surface-bonded piezoelectric films is
studied in this paper. The elastic body is modeled by the three-dimensional
equations of elasticity, while the thin piezoelectric film is modeled by the
two-dimensional equations of piezoelectric shells. It is shown that the
governing equations can be written as a system of boundary
integral–differential equations. These equations are solved numerically by
the boundary element method in an example.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The mechanics of an elastic body coated with an elastic film
of a different material was first studied in [1]. It is useful in
surface and interface phenomena. Further development on the
subject can be found in [2]. During the development of smart
structures, thin elastic bodies coated with piezoelectric films
have been studied extensively and many structural theories
have been developed [3–6]. When the elastic bodes are not
very thin, structural theories are not accurate enough and three-
dimensional modeling of the elastic bodies is needed. In
applications, three-dimensional (non-thin) bodies are widely
used. The sensing of the deformation of three-dimensional
bodies is important in, for example, nondestructive testing.
New technologies also allow piezoelectric paint to be deposited
on bodies of any shapes [7]. Recently, attempts have been made
to attach artificial muscles [8] made from thin electroelastic
films to human hearts, which are three-dimensional in nature.
All these require the knowledge of the behaviour of a three-
dimensional body coated with thin electroelastic films, either
for sensing or for actuating. In this paper, the mechanics of a
three-dimensional elastic body coated with a thin piezoelectric
film is studied. The thin piezoelectric film is modeled by the
two-dimensional equations of piezoelectric shells. It is shown
that the behavior of the body and the film is governed by a set of

boundary integral–differential equations. These equations are
solved by the boundary element method (BEM) numerically
in an example.

2. Equations for a thin piezoelectric shell

We consider a thin piezoelectric shell with the following
material matrices under the compact matrix notation [9]:


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66


 ,




e11 e21 e31

e12 e22 e32

e13 e23 e33

e14 e24 e34

e15 e25 e35

e16 e26 e36


 ,

(
ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

)
.

(1)

As special cases, the matrices in (1) include commonly used
piezoelectric materials such as ceramics poled in the 1, 2, or
3 directions which are transversely isotropic (∞mm), PVDF
(2mm) and lithium tetraborate (4mm). The shell is assumed
to be very thin so that the membrane theory for tension can
be employed, which describes a film that does not resist
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bending or transverse shear. The three-dimensional mechanical
displacements ui and electric potential φ are related to the
middle-plane displacements and potentials by

ui = ui(α1, α2), φ = φ(0)(α1, α2) + α3φ
(1)(α1, α2),

(2)
where α1 and α2 are the middle-plane principal coordinates, α3

is the thickness coordinate and φ(0) and φ(1) are the zeroth- and
first-order electric potentials. The corresponding membrane
strains and electric fields are given by [10]

S1 = 1

A1

∂u1

∂α1
+

u2

A1A2

∂A1

∂α2
+ κ1u3,

S2 = 1

A2

∂u2

∂α2
+

u1

A1A2

∂A2

∂α1
+ κ2u3,

S6 = A2

A1

∂

∂α1

(
u2

A2

)
+
A1

A2

∂

∂α2

(
u1

A1

)
,

E
(0)
1 = − 1

A1

∂

∂α1
(φ(0)), E

(0)
2 = − 1

A2

∂

∂α2
(φ(0)),

E
(0)
3 = −φ(1),

(3)

where A1 and A2 are Lame’s coefficients, and κ1 and κ2 are
the principal curvatures of the middle surface of the shell. The
membrane tensile and shear forces and electric displacements
are given by the following membrane constitutive relations:

N1 = hc
p

11S1 + hcp12S2 − he
p

k1E
(0)
k ,

N2 = hc
p

12S1 + hcp22S2 − he
p

k2E
(0)
k ,

N6 = hc66S6 − hek6E
(0)
k ,

D
(0)
k = he

p

k1S1 + hepk2S2 + hek6S6 − hε
p

klE
(0)
l ,

(4)

where

c
p

11 = c11 − c2
13/c33, c

p

12 = c12 − c13c32/c33,

c
p

22 = c22 − c2
23/c33,

e
p

k1 = ek1 − c13ek3/c33, e
p

k2 = ek2 − c23ek3/c33,

ε
p

kl = εkl − ek3el3/c33.

(5)

The membrane equations of equilibrium and electrostatics take
the form [10]

∂

∂α1
(A2N1) +

∂

∂α2
(A1N6) +N6

∂A1

∂α2
−N2

∂A2

∂α1

+ A1A2
(
ρhf1 + T31|h/2−h/2

) = 0, (6a)

∂

∂α1
(A2N6) +

∂

∂α2
(A1N2) +N6

∂A2

∂α1
−N1

∂A1

∂α2

+ A1A2
(
ρhf2 + T32|h/2−h/2

) = 0, (6b)

− A1A2κ1N1 − A1A2κ2N2 + A1A2
(
ρhf3 + T33|h/2−h/2

) = 0,

(6c)
∂

∂α1
(A2D

(0)
1 ) +

∂

∂α2
(A1D

(0)
2 ) + A1A2D3|h/2−h/2 = 0, (6d)

where h is the shell thickness, fi is the body force, Tij is the
three-dimensional stress tensor andDi is the three-dimensional
dielectric displacement. With successive substitutions from (3)

and (4), equations (6a)–(6c) can be written in the following
compact form:

Li(u, φ
(0), φ(1)) + ρhfi + t+i − t−i = 0, (7)

whereLi are linear differential operators, and t±i = T3i (±h/2)
are the traction vectors at the major faces of the film. At
the edge of the film two mechanical boundary conditions
of the membrane forces N1, N2 and N6 and the membrane
displacements u1 and u2 or their combinations need to be
specified. For electrical boundary conditions one condition of
φ(0) orD(0)

1 andD(0)
2 or their combination should be specified.

3. Boundary formulation of the problem

We consider a three-dimensional elastic body in equilibrium,
which is governed by the equations of linear elasticity. On
the surface of the body a thin piezoelectric film is coated,
which is governed by the equations in the previous section.
Effectively these equations of the piezoelectric film appear in
the boundary conditions of the differential equations of the
elastic body. Since the film interacts with the body through the
surface of the body, a more interesting and effective approach is
through the boundary integral equation (BIE) formulation and
its numerical solution technique—the BEM. The displacement
u and surface traction t of the elastic body (in a domain�with
boundary  ) satisfy the following BIE [11]:

C(Po)u(Po) +
∫
 

T̂ (P, Po)u(P ) d (P )

=
∫
 

Û(P, Po)t(P ) d (P ) +
∫
�

Û(P, Po)b(P ) d�(P ), (8)

where Cij = δij /2 for a smooth boundary, b is the body force
vector, Û and T̂ are known second-rank tensors and are related
to the fundamental solution of the Navier operator, Po is the
source point and P is the field point. The traction vector t

on the surface of the elastic body is related to the traction on
one of the faces of the film by t = −t−. Therefore, from (7)
and (8), we obtain

Cu+
∫
 

T̂u d = −
∫
 

Û(L+ρhf + t+) d +
∫
�

Ûb d�, (9)

where the displacement continuity conditions between the
body and the film have been used. Equation (9) is a system
of boundary integral–differential equations because of the
differential operator L. If the body is only partially coated
with a film, then in the non-coated portion of the surface
BIE (8) still applies. Boundary integral equations [12, 13]
and boundary integral–differential equations [14] have been
used to study piezoelectric films bonded to the surface of
two-dimensional semi-infinite elastic bodies. Equation (9)
represents a generalization of the equations in [12–14] to
three-dimensional finite bodies. Equation (9) is in fact rather
complicated. In the following we examine the basic behavior
of an elastic body with a piezoelectric film governed by (9) in
an example.
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4. A two-dimensional example

Consider a two-dimensional plane-strain example of a circular
elastic body of radius R shown in figure 1. From −α to α, the
body is coated with a ceramic film of thicknesshwhich is poled
in the thickness direction. The film is electroded at its two
major faces and can work as either a sensor or an actuator. The
voltage across the electrodes is denoted by V , which implies,
from (2),

φ(0) = 0, φ(1) = V/h. (10)

The relevant membrane force, in the polar-coordinate
system, is

Nθ = hc
p

11(u,θ + ur)/R + ep31V, (11)

where, for ceramics, we have

c
p

11 = c11 − c2
13/c33, e

p

31 = e31 − c13e33/c33. (12)

The traction on the elastic body can be determined from (6a)–
(6d) as

tr = − 1

R
Nθ = − 1

R

(
hc

p

11

u,θ + ur
R

+ ep31V

)
∼= − 1

R
e
p

31V,

tθ = 1

R

∂Nθ

∂θ
= 1

R

(
hc

p

11

u,θθ + ur,θ
R

+ ep31V,θ

)
∼= 1

R
e
p

31V,θ ,

(13)
where the approximation is for the case when the film is
relatively soft compared with the body (small cp11). Since V
is a piecewise constant function, its derivative leads to a delta
function and the traction is effectively a normal distribution q
and a pair of concentrated forces Q as shown in figure 2 with

q = e
p

31V/R, Q = e
p

31V. (14)

The presence of concentrated Q can also be seen from the
boundary condition of vanishing Nθ at the edge of the film
and (11). We note that q is related to the curvature of the
shell and does not exist for a plate, while Q is the same as
the actuating force of a plate actuator [15]. When the film is
not soft compared with the body, Q represents the resultant of
a narrow local distribution [15]. If the global response rather
than the local stress distribution is of main interest, (14) can still
be used. Then effectively the traction on the elastic body due to
the film is known and the usual boundary element analysis of an
elastic body can be performed. Otherwise boundary integral–
differential equations will need to be solved, which can be
done numerically as in the special case of a two-dimensional
half-space in [14].

As a numerical example we consider a PZT-7A
piezoelectric film with the following material constants [16]:

ρ = 7500 kg m−3, c11 = c22 = 148, c33 = 131,

c12 = 76.2, c13 = c23 = 74.2, c44 = c55 = 25.4,

c66 = 35.9 GPa, e15 = 9.2, e31 = −2.1,

e33 = 9.5 C m−2, ε11 = 460ε0, ε33 = 235ε0,

ε0 = 8.85 × 10−12 F m−1.

(15)
For geometric parameters we choose R = 20 mm and h =
1 mm. As an example of an actuator a voltage V = 10 V

α 
α 

V

Elastic 
body Ω 

Piezoelectric 
film 

R h 

x 

y 

Γ 

Figure 1. An elastic body coated with a piezoelectric film. Thick
curves represent electrodes.
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α 
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Figure 2. Actuating forces on the elastic body due to the film.
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Figure 3. Discretization of the circular elastic body with 72
quadratic boundary elements (three nodes form one element).

is applied across the film. For the elastic body we consider
plastics with E = 2.0 × 109 Pa and ν = 0.3. The BIE/BEM
code developed in [17] is employed for this study and 72
quadratic boundary elements are used (figure 3). The three
nodes at the (0, 20), (−20, 0) and (0,−20) locations in the
BEM model are fixed in the tangential direction. The deformed
shapes of the body under the voltage are shown in figures 4
and 5 for two different values of α. The deformed shapes are
as expected under the applied loads and constraints.

310



Technical note
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Figure 4. Deformed shape of the elastic body (α = 30◦).
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Figure 5. Deformed shape of the elastic body (α = 60◦).

Conversely, if the body is deformed due to mechanical
loads, a voltage will be produced across the electrodes of the
film as a sensing signal. The above results are based on the
approximation in (13). Direct numerical computation based on
(9) is left as future work. The present boundary formulation can
be generalized to include the bending effect of the piezoelectric
film, as in the elastic case [2].

It should be pointed out that the BEM is very efficient in
solving problems where the boundary solutions (displacement
and stresses) are of paramount interest. The BEM discretizes
the boundary and interfaces of the problem domain only and
provides the solutions where they are most desired. This is in
strong contrast to domain-based methods, such as the finite-
element method, that discretize the whole domain and provide
the solutions for all locations.

5. Conclusion

The behavior of an elastic body coated with thin piezoelectric
films can be described by a boundary formulation. The
boundary element technique can be an efficient method
to solve the problem numerically. The formulation and
solution technique are useful in the sensing and actuating
of elastic bodies through surface-bonded piezoelectric films.
The present formulation can be generalized to include more
sophisticated behavior of the piezoelectric films using higher-
order theories of shells.
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