
Application of a new composite BIE for 3-D
acoustic problems
Shaohai Chen & Yijun Liu
Department of Mechanical, Industrial and Nuclear
Engineering,  P.O. Box 210072,  University of Cincinnati,
Cincinnati,  Ohio 45221-0072,  U.S.A.
Email:  Yijun.Liu@uc.edu

Abstract

Applications of a new and efficient composite BIE formulation for 3-D acoustic
problems are studied in this paper, based on an improved weakly-singular form
of the hypersingular boundary integral equation (HBIE).  This new form of the
HBIE involves only tangential derivatives of the density function and thus its
discretization using the boundary element method (BEM) is easier to perform.
C0 continuous (conforming) quadratic elements are employed in the
discretization of this weakly-singular form of the HBIE, as compared with using
nonconforming and/or C1 continuous boundary elements which were advocated
earlier.  Numerical examples of both scattering and radiation problems with
various geometries are presented in this paper to demonstrate the accuracy and
versatility of this improved composite BIE for 3-D acoustics.

1   Introduction
The linear combination of the conventional boundary integral equation
(CBIE) and hypersingular boundary integral equation (HBIE) was first
introduced by Burton and Miller [1] in 1971 for 3-D exterior acoustic
problems. This composite BIE formulation has been demonstrated to be
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the most effective and theoretically-sound approach among all the
methods available in dealing with the fictitious-eigenfrequency difficulty
(FED) in acoustics. The issue of improving the efficiency of the
composite BIE has been focused on how to tackle the hypersingular
integrals. Many regularized or weakly-singular forms of HBIE have been
reported in the literature, see, e.g., [2-4]. Although the discretization of
these regularized forms still demands the use of boundary elements with
C1 continuity near each node, as demanded by the theory [5], many
successful studies using C0 conforming elements, on acoustic as well as
elastostatic problems, have been reported [2-4, 6]. A recent development
of this relaxation of the smoothness requirement can be found in [7].

       In this paper, the effectiveness and efficiency of a new weakly-
singular form of the HBIE for 3-D acoustic wave problems presented in
[8] is further studied.  Compared with the weakly-singular form of the
HBIE for acoustic problems published earlier in [4], this new form
involves only tangential derivatives of the density function, and thus its
discretization using the BEM is easier to perform.  Instead of using
nonconforming and C1 continuous boundary elements as advocated in [4],
C0 conforming quadratic elements are employed in the discretization of
this new weakly-singular form of the HBIE.  The new form of the HBIE
is applied in the composite BIE formulation to overcome the fictitious
eigenfrequency difficulties in 3-D acoustics using BIEs.  Numerical
examples of both scattering and radiation problems are given to
demonstrate the accuracy and versatility of the new weakly-singular form
of the HBIE. Report on the test of an iterative solver is also presented.

2   The new weakly-singular form of the HBIE

The conventional boundary integral equation (CBIE) for acoustic problem
can be written as:
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where φ  is the total acoustic wave satisfying the Helmholtz equation for
time harmonic waves, Iφ  is a prescribed incident wave,
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o π=  is the full space Green's function for the Helmholtz
equation, and C(Po) = 1/2 when the boundary S is smooth. Equation (1) is
the singular form of CBIE and can be readily converted to its weakly-
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singular form.

       The hypersingular BIE (HBIE), which is the derivative of the CBIE,
can be converted into a weakly-singular form by employing a two-term
Taylor’s series subtraction from the density function and using the
identities for the Green’s function [9] to evaluate the added-back
terms [4]. In [8], the tangential gradient, instead of the total gradient of φ
was used and found to be sufficient to remove or regularize the
hypersingularity of the kernel. Thereby an improved weakly-singular
form was found as following [8]:
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where 1ξ  and 2ξ are the first two (tangential) coordinates of a local
curvilinear coordinate system 321 ξξξO  with origin at point Po (Fig. 1),

kk xe ∂ξ∂ αα /= (k = 1, 2, 3) are the first two column vectors of the inverse

of the Jacobian matrix and )()( okkko xxe −=− ααα ξξ .
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Figure 1:   The global and local coordinate systems.
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       Equation (2) is the desired weakly-singular form of the hypersingular
BIE for acoustic wave problems.  It is interesting to note that the HBIE
for acoustics in the form of Eqn (2) exhibits a term-by-term
correspondence with the HBIE for elastodynamics developed in [10].
Compared with the form used earlier [4], this new form is much easier to
discretize because the tangential derivatives of )(Pφ  can be evaluated
readily using shape functions on an element.  The discretization
procedure for Eqn (2) is similar to that described in [4].

3   Numerical examples
Studies on the scattering and radiation from bodies of spherical,
cylindrical and submarine-like shapes were conducted to verify the
developed composite BIE with the conforming quadratic elements.

       The first numerical study is for a spherical body immersed in an
acoustic medium, for which analytical solutions [11] are available for
both the scattering and radiation problems.

       Figure 2 shows the radiated waves when the sphere is pulsating with
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Figure 2:   Pressure on the surface of the pulsating sphere.
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a uniform radial velocity ov  on the surface S and oovikzn =∂φ∂ / , with oz

being the characteristic impedance. 80 boundary elements were used. At
π=ka and π2  the fictitious eigenfrequencies for the CBIE can be clearly

identified (near which the CBIE results deviate substantially from the
analytical solution).  The composite BIE, however, provides very
satisfactory and stable results throughout the range of the frequencies.

       The second study is for a capsule-like cylindrical body.  Since no
analytical solutions are readily available for this problem, the commercial
boundary element software COMET/Acoustics is employed in the
verification for the radiation problem.  The same mesh with 216 elements
and 626 nodes (Fig. 3) is used for both COMET/Acoustics and the
developed composite BIE code. Fig. 4 shows the study of radiated wave
for a pulsating capsule. Fig. 5 shows the back scattering wave of the
capsule impinged upon by an incident wave Iφ  in the x-direction. Four
fictitious eigenfrequencies of the CBIE were identified by monitoring the
condition number of the system of equations at each frequency and the
stability in the CBIE results. It can be clearly seen that both the results
using COMET direct BIE and the CBIE deteriorate near the four fictitious
eigenfrequencies. The composite BIE provided stable and smooth results
throughout the frequency range, with very low condition numbers
observed. The results from COMET CHIEF [12] method stayed closely
along the same smooth curve although suitable CHIEF points were
required.

Figure 3:   A cylindrical (capsule-like) body with radius = 1.0m and total

length = 7.0m.

x

y
z



Boundary Elements526

               

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250

COMET Direct BIE

COMET CHIEF

CBIE

Composite BIE

Frequency (Hz)

P
re

ss
ur

e 
| φ

 |

Figure 4:   Radiated wave from the cylinder in the lateral direction.
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Figure 5:   Backscattering from the cylinder (with side incident wave).
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Figure 6:   A generic submarine model with main radius = 5m and total
length = 70m.

       The third example is a generic submarine submerged in water. The
same mesh with 492 elements and 1430 nodes (Fig. 6) was used for both
CBIE and the composite BIE code. The scattered wave for the submarine
impinged upon by an incident wave in the x_direction was studied. The
back scattering and forward scattering waves are shown in Fig. 7 and Fig.
8, respectively. The fictitious-eigenfrequency difficulty is clearly shown
in the CBIE case and completely removed in the composite BIE case.
Small deviation between results of CBIE and composite BIE can be
observed. This may be due to the complexity of the kernel function of
composite BIE and can be resolved by increasing mesh density.

       An iterative solver [13] is being tested for solving the linear system
of equations, and compared with the direct solver. Dramatic speedup in
solution time, with a factor as high as 52 times faster, is observed, except
for the composite BIE case of the generic submarine, in which special
pre-conditioner may be needed to regularize the linear equation systems.
Detailed results will be reported at the conference.
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Figure 7:   Back scattering from the submarine at point (-175, 0, 0).

Figure 8:   Forward scattering from the submarine at point (175, 0, 0).
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4   Conclusion
The effectiveness and efficiency of the new weakly-singular form of the
hypersingular boundary integral equation for 3-D acoustic wave problems
is shown by numerical examples of radiation and scattering problems for
spherical, cylindrical and submarine-like objects. Conforming C0

quadratic boundary elements are employed in the discretization as a
relaxation of the theoretical smoothness requirement and satisfactory
results are retained. An iterative solver is tested with dramatic speedup
being observed for most of the cases.
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