BEM and the Precorrected-FFT Acceleration Technique

Wenjing Ye

Complex Systems Design Automation Group

Hong Kong

Hong Kong located at the edge of Southern China

Hong Kong University of Science & Technology

Opened in 1991, HKUST is an international research university, leading the advance of science and technology, and educating the new generation of front-runners for Asia and the world.

	6000
Postgraduate	1300
Taught postgraduate	2000
Faculty	461

Hong Kong University of Science & Technology

Fast BEMs

General Antipole → General Antipole → Fast multipole → BEM
 Sector → Fast multipole → Fast multi

- **A** Wavelet BEM
- Precorrected-FFT technique
- \bigcirc etc.

- nearby interaction accurate evaluation
- far-field interaction approximation

A Projection

Transposed polynomial interpolation

Computation of grid-grid interaction
FFT

A Interpolation

Delynomial interpolation

Correction

Direct computation of nearby interaction

 $\int_{\Gamma} G(x, y) u(y) ds(y) \approx \sum_{\mu} W_{\mu}(x) \sum_{\nu} G(x_{\mu}, y_{\nu}) \int_{\Gamma} P_{\nu}(u(y)) ds(y)$

Complexity

 $O(n) + O(m \log m)$

n: number of boundary elements *m*: number of grid points

History of the Development

- Electrostatic problems Fastcap (MIT, Prof. White's group)
 Electromagnetic problems – FastHenry (MIT)
 Stokes Flows – FastStokes (MIT) FastSlipStokes (Gatech)
 Lincer Electostatics – FastStruct (Cotoch
- Linear Elastostatics FastStruct (Gatech)

Air Damping on Microresonators

Courtesy of (a) D. Freeman (b) O. Brand (c), F. Ayazi and (d) C. Nguyen

Air Damping on Laterally Oscillating Micromachined Resonators

	Drag Force (nN)	Q
Couette Model	110.7	54.5
1D Stokes Model	123.2	49
FastStokes (3D)	207.6	29.1
Measurement	224	27

Coupled Structural and Electrostatic Analysis

Applications: MEMS switches, pressure sensors, etc

Recent Efforts

- - **Quasilinear problem**
- A Nonhomegenous problems
 - Mechanical characterization of porous solids
- **A** Time-dependent problems
 - Wave propagation inside porous solids

Mechanical Characterization of Porous Solids

Random but uniformly distributed pores with uniform shape and size
 Porosity is small

 Generalized selfconsistent theory
 Differential scheme, etc

Effective Material Properties

Effective Material Properties

Energy equivalency

$$K^{L} = \frac{\sigma^{0}V}{\sum_{j=1}^{M} (\mathbf{n} \cdot \mathbf{u}A)_{j}}$$

$$K^{U} = \frac{\sum_{j=1}^{M} \left(\mathbf{T} \cdot \mathbf{x} A \right)_{j}}{9\varepsilon^{0} V}$$

Effective Material Properties

Effective Young's Modulus

Examples – Steady Case

Shape Effect on Effective Young's Modulus

Construction Spherical cavity embedded in an infinite elastic medium

Spherical cavity embedded in an infinite elastic medium

Spherical cavity embedded in an infinite elastic medium

Computation Time

Cube with several spherical voids

Future Directions

▲ Algorithm optimization

