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2INTRODUCTION

A. Frangi, BEM for modelling dissipation in MEMS



2

DIFFERENT SOURCES OF DISSIPATION

100000

Example: Tang resonator

f=~18kHz

solid/surface damping: internal friction, 
thermoelastic damping
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Pressure [mbar]

fluid damping:
continuum regime

fluid damping:
rarefied regime

TYPICAL APPLICATION: reduced parameter model for Q extraction

Usual assumptions:

•only springs can deform but contribution to dissipation is   
negligible; shuttle is rigid (displacement denoted by U(t)
w.r.t. reference to rest position)

4

•small perturbations (linear response)

•low resonating frequencies imply instantaneous fluid 
responsex

A. Frangi, BEM for modelling dissipation in MEMS

mass M

spring Kdamper b



3

TYPICAL APPLICATION: reduced parameter model for Q extraction

Usual assumptions:

•only springs can deform but contribution to dissipation is   
negligible; shuttle is rigid (displacement denoted by U(t)
w.r.t. reference to rest position)
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•small perturbations (linear response)

•low resonating frequencies imply instantaneous fluid 
response

As a consequence a quasi-static approach applies and 
the force exerted by the gas on the structure has the form:

and t(x) is a real vector function of position. 
All is needed is a tool to estimate t(x) when a unit velocity 
is imposed to the shuttle

( , ) ( ) ( )t U t=T x t x &

x
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mass M

spring Kdamper b

Overall gas action on structure along direction x is:

Eventually:
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6REDUCED PARAMETER MODEL
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These assumptions lead to a quality factor

ω ω

0

10

0.6 0.8 1 1.2 1.4

100

150

200

0.5
1
5
10
50
100
500

Ph
as

e 
(°

)

Q

Rigorous definition of Q:
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Assumptions can be validated with 
phase or amplitude diagrams obtained experimentally

Impose a sinusoidal input, measure output and 
phase shift between input and output

These assumptions lead to a quality factor
Q which depends on pressure 
only through B

Q crucial in gyroscopes, magnetometers, etc…
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REDUCED PARAMETER MODEL: accounting for deformability

If also springs contribute to gas damping (and more in general 
when an accurate estimate of M is required accounting also for 
spring contribution), one typically assumes:

( , ) ( ) ( )u t g U t=x x
x
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where g(x) is a typical mode of the structure (static or dynamic) 
and reduces to a constant on rigid shuttle.
Then the Principle of Virtual Power is enforced using as virtual 
velocity field:

If t(x) denotes the force on the structure when the velocity 
g(x) is enforced then the virtual power of viscous forces is:

( ) ( )u g U=x x %%

x

( ) ( , ) [ ]( ) : [ ]( , ) ( ) ( , ) .... = 0xu u t d u u t d u T t dSρ
Ω Ω ∂Ω

Ω+ Ω− +∫ ∫ ∫x x ε x σ x x x% && % %

( , ) ( ) ( )t U t=T x t x &

PVP
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g(x)  is enforced, then the virtual power of viscous forces is:

eventually yielding:

( ) ( ) ( ) ( )MU t BU t KU t F t+ + =&& &

( )( , ) ( ) ( ) ( )V xU U U g t dS U t
∂Ω

= ∫ x x% % &P

( ) ( )xB g t dS
∂Ω

= ∫ x x

deformed configuration 
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REDUCED PARAMETER MODEL: accounting for higher frequencies

If frequencies increase but linearity is preserved (almost 
always true the case of inertial MEMS), than one has to 
work in the frequency domain 

( , ) ( ) i tu t g Ue ω=x x
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If T(x,t) denotes the force exerted on the structure by the 
fluid, then typically:

with t(x,ω) œ  hence, introducing the complex 
damping coefficient:

( ) ( ) ( , )xB g t dSω ω
∂Ω

= ∫ x x

( , ) ( , ) i tt i Ue ωω ω=T x t xx
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the final 1D model writes:

with B contributing to both damping and stiffness

2( ( ) )M i B K U Fω ω ω− + + =
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KNUDSEN NUMBER AND FLOW MODELS

Knudsen number Kn = λ/L

λ: mean free path of molecules
L: characteristic length scale 1000
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λ=0.069 µm at SATP,     λ~1/p 
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Simplified models: linearized  Reynolds equation

fixed plate
h=h0+h1

upper plate moving in vertical direction

x

z

y

10

typical of lubrification theory

obtained by simply imposing the mass balance equation
where qx is the total flux along x and ρ is density (indep. of z)

and inserting for qx  the flux obtained from the Poiseuille 
parabolic velocity distribution

then linearise w.r.t. to pressure: p=p0+p1

xy
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• h0 small w.r.t. to plate dimensions L
• variations h1 of h0 small w.r.t. to h0
• isothermal process

various extensions to account for edge effects of rectangular and circular plates, holed plates, etc.

Blech, J. J., On Isothermal Squeeze Films, J. Lubrication Technology, 105, 1983.
Bao M., Yang H., Squeeze film air damping in MEMS, Sensors and Actuators A ,136, 3–27, 2007 (Review)

if this term is neglected eq. is called incompressible Reynolds
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Full Navier-Stokes model and simplifications

Reynolds number Re = UL/ν (U typical speed, L typical dimension, ν kinematic viscosity)

11

if  Re << 1   neglect non-linear convective terms in Navier Stokes

Mach number M = U/c  (U typical speed, c speed of sound)
if M << 1  set  ∇.u = 0  (incompressibility) in Navier-Stokes

Stokes number  St = fL2/ ν (f vibration frequency)
if St << 1  neglect inertia terms in Navier-Stokes

Example of biaxial accelerometer (SI units):
L ~ 2.6×10-6 m;   f = 4400Hz;  ν =1.5 10-5;   U ~ 2πfD ; 
D < 1/10 L (D amplitide of oscillation)

A. Frangi, BEM for modelling dissipation in MEMS

D < 1/10 L  (D amplitide of oscillation)
U ~ 7×10-3 Re ~ 10-3 M ~ 7×10-4 St ~ 7×10-3

Incompressible (quasi-static) Stokes formulation

QUASI STATIC STOKES PROBLEM

on  S

in  Ω∞-Ω

12

p pressure (defined up to a constant!)
u fluid velocity, g structure velocity
t = σ.n tractions, tS tractions projected on surface

n Ω1

analysis domain

Ω∞-ΩBasic assumption:
fluid response to structure motion is instantaneous. 

Time dependence?
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Ω2

Time dependence?
1. inertia terms are dropped
2. velocity of structures is enforced as boundary conditions

STATIC STOKES PROBLEM WITH DIRICHLET BC
formally identical to incompressible elasticity

( , ) ( ) ( )S t g U t=x x& &
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13

Model problem to compare Navier-Stokes, 
Stokes, and Reynolds solutions for damping
coefficients. A 50x50x4 micron plate in motion 
above a 60x60x4 micron plate at 1atm, 300K.

Comparison between full models and Reynolds

fi d l t p ,fixed plate

A. Frangi, BEM for modelling dissipation in MEMS

Comparison of 
Stokes,
Reynolds 
Navier-Stokes, 
solutions

STOKES PROBLEM BY BEM: MVT and slip BC

on  S

in  Ω

14

t tractions, tS tractions projected on surface
η

A. Frangi, BEM for modelling dissipation in MEMS

MVT: Mixed Velocity Traction.  The two equations are linearly combined 
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velocity equation

STOKES PROBLEM BY BEM: MVT

traction equation
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very same kernels as in 
incompressible elsticity!!

16

Exact null space vs numerical null space

NULL SPACE OF VELOCITY EQUATION

4

A. Frangi, BEM for modelling dissipation in MEMS

1 2
3

fingers
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WHY BEM?  

Infinite extent of air domain
No mesh of air domain
No unknowns in air domain

Tractions are primal variables hence very

17

Largest problem dimension on a desktop
NBEM:  ~ α 106

good accuracy 

•GMRES iterative solver
•Classical FMM with adpative octree 
•Truncation order p ~ 8
•Computation on the fly of near integrals
•Block diagonal preconditioning

A. Frangi, BEM for modelling dissipation in MEMS

Equivalent FEM problem dimension

NFEM:  ~ NBEM
3/2 ~ β 109

Frangi A., Di Gioia A., Multipole BEM for the evaluation of damping forces on MEMS, Computational Mechanics, 37, 24-31 (2005)
Frangi A, Tausch J., A qualocation enhanced approach for the Dirichlet problem of exterior Stokes flow, Eng. Anal. Boundary Elem., 29, 86–93 (2005)
Frangi A, Spinola G., Vigna B. : On the evaluation of damping in MEMS in the slip-flow regime, Int. J. Num. Meth. Engng., 68, 1031–1051 (2006)

•Block diagonal preconditioning
•OpenMP parallelisation

TANG RESONATOR 18

co
ef

f. 
B

A. Frangi, BEM for modelling dissipation in MEMS

diverge at low pressure
since continuum
model fails

( ) ( ) ( ) ( )MU t BU t KU t F t+ + =&& &

( )xB t dS
∂Ω

= ∫ x
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BIAXIAL ACCELEROMETER 19

A. Frangi, BEM for modelling dissipation in MEMS

stator (red and orange)
Fixed to the substrate

Rotor (blue)
Mobile

Mobile mass
(holed)

f = 4400Hz

EXPERIMENTAL VALIDATION: 
LINEAR ACCELEROMETER AND SLIP B.C. 20

p = 1 bar

A. Frangi, BEM for modelling dissipation in MEMS
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21
EXPERIMENTAL VALIDATION: 
LINEAR ACCELEROMETER AND SLIP B.C.

B
/B

0

Typical comparison of simulations and results 
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excellent agreement at high pressure
diverge at low pressure
since continuum model fails

22Examples of full scale analysis: comb finger resonator

A. Frangi, BEM for modelling dissipation in MEMS
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23Examples of full scale analysis: rotational resonator

A. Frangi, BEM for modelling dissipation in MEMS

24Examples of full scale analysis: parallel plates resonator

A. Frangi, BEM for modelling dissipation in MEMS
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Reynolds number Re = UL/ν (U typical speed, L typical dimension, ν kinematic viscosity)

EXTENSION TO HIGHER WORKING FREQUENCIES 25

if  Re << 1   neglect non-linear convective terms in Navier Stokes

Mach number M = U/c  (U typical speed, c speed of sound)
if M << 1  set  ∇.u = 0  (incompresibility) in Navier-Stokes

Stokes number  St = fL2/ ν (f vibration frequency)
if St << 1  neglect inertia terms in Navier-Stokes

Example of biaxial accelerometer (SI units):
L ~ 2.6 x10-6 m;   f = 4400Hz;  ν =1.5 10-5;   U ~ 2πfD ; 
D < 1/10 L (D amplitide of oscillation)

A. Frangi, BEM for modelling dissipation in MEMS

D < 1/10 L  (D amplitide of oscillation)
U ~ 7x10-3 Re ~ 10-3 M ~ 7x10-4 St ~ 7x10-3

Incompressible frequency-domain Stokes formulation

26INCOMPRESSIBLE OSCILLATORY STOKES FLOW

Mixed Velocity Traction Formulation

Kernels involved

A. Frangi, BEM for modelling dissipation in MEMS
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27

Wave propagation in lossy media (e g soils) Linear constitutive relations involve

HELMHOLTZ LIKE PROBLEMS WITH COMPLEX WAVENUMBERS

Wave propagation in lossy media (e.g. soils). Linear constitutive relations involve 
complex moduli leading to complex-valued wavenumbers with α=±1 0<β<1 (often with β<<1)

Eddy currents for the design of electrical transformers (|α|=β=1)
(Schmindlin et al. 2001)

Transient Stokes flow for the analysis of dissipation in Micro-Systems (|α|=β=1)
(Ye et al. 2003)

Computation of Casimir forces (attractive forces arising between uncharged conductive surfaces 
in vacuum) (α =0, β=1)
(R id t l 2009)

A. Frangi, BEM for modelling dissipation in MEMS

(Reid et al. 2009)

Optical tomography with α = -1; β >1.
(Zacharopoulos et a. 2006)

Classical formulation with Gegenbauer addition theorem very effective if β is large enough w.r.t. to α
Frangi and Bonnet, CMES, 2010

EXAMPLE (J.White, W. Ye et al.) 28

A. Frangi, BEM for modelling dissipation in MEMS
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KNUDSEN NUMBER AND FLOW MODELS

Knudsen number Kn = λ/L

λ: mean free path of molecules
L: characteristic length scale 1000
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BGK MODEL FOR BOLTZMANN EQUATION

f(x,ξ) : mass density probability depends 
on location x and molecular velocity ξ

mass density probability for a gas at rest

30

mass density probability for a gas at rest

rest Maxwellian

rhs accounting for molecule collisions

A. Frangi, BEM for modelling dissipation in MEMS

g
BGK model

local Maxwellian
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KNUDSEN NUMBER AND FLOW MODELS

Knudsen number Kn = λ/L
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FREE MOLECULE FLOW

collisions between molecules
neglected y

f(x,ξ) : mass density probability depends  
on location x and molecular velocity ξ

for molecules coming from other MEMS surfaces:

32

for molecules coming from far field region:

x
n(x)

A. Frangi, BEM for modelling dissipation in MEMS

Diffuse model for molecules re-emitted from surfaces

incoming flux of 
molecules
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ROUGHNESS OF SURFACES DUE TO ETCHING 33

A. Frangi, BEM for modelling dissipation in MEMS

FREE MOLECULE FLOW: LOW FREQUENCY LIMIT 34

and linearise with respect to  ρw1:

If shuttlle velocity is small w.r.t. thermal velocity

( , ) ( ) ( )w t g q t=x x &

x

y

J(x): normalised flux of  
molecules at the wallLimit case: 

1

( ) ( ) ( )
( , ) ( ) ( )w

g q
t J q tρ =x x &

assuming
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S+(x) : region visible from x

n(x)

Quasi static approximation: radiosity equation 
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RADIOSITY COMPUTATION IN COMPUTER GRAPHICS 35

A. Frangi, BEM for modelling dissipation in MEMS

FORCES EXERTED ON THE SURFACE

Once J(x,ω) is available, compute tractions from similar BIE:

36
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static limit case

•Frangi A., Ghisi A., Coronato L., On a deterministic approach for the evaluation of gas damping in inertial MEMS in the free-molecule regime,
•Sensor & Actuators, A 149, 21–28, 2009
•Frangi A., BEM technique for free-molecule flows in high frequency MEMS resonators, Engineering Analysis with Boundary Elements, 33, 493–498, 2009
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TEST PARTICLE MONTE CARLO METHOD 37

∆q denotes the linear momentum change of one molecule due 
to one collision and w the instant velocity of the shuttle, 

The total dissipation (energy transfer) induced by a single molecule 
before exiting the analysis domain throughbefore exiting  the analysis domain through 
an in-flow surface is

for the i-th in-flowsurface the number of incoming
molecules per unit time is

the average dissipation per unit-cycle D due to the molecules entering
all the surfaces is

A. Frangi, BEM for modelling dissipation in MEMS

Finally the coefficient B in the 1D model is

• BIE independent of velocity profile imposed
• BIE fast and robust
• BIE not affected by statistical noise
• BIE limited (so far) to diffuse reflection boundary conditions

BIE vs TEST PARTICLE MONTE CARLO METHOD 38

A. Frangi, BEM for modelling dissipation in MEMS
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OUT-OF-PLANE ROTATIONAL RESONATOR 39

A. Frangi, BEM for modelling dissipation in MEMS
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Qinetiq MAGNETOMETER 41

A. Frangi, BEM for modelling dissipation in MEMS

SEM of magnetometer structure

Qinetiq MAGNETOMETER
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BRIDGING TECHNIQUES 43
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free molecule analysis

Aim:
predict the behaviour in

A. Frangi, BEM for modelling dissipation in MEMS

log(p)

continuum Stokes solver
predict the behaviour in
transition regime from
free-molecule flow and
slip Stokes analysis

http://www.stru.polimi.it/home/frangi/pubblicazioni.html 44FURTHER REFERENCES

Thank you for your attention!
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